Year 2 Monitoring Report Final

Hudson Property

DMS Project ID #: 95361 DMS Contract #: 004638 USACE Action ID# SAW-2012-01394 Beaufort County, North Carolina

Submitted: December 2017

Submitted to/Prepared for: NC Department of Environment and Natural Resources Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by: ALBEMARLE RESTORATIONS, LLC P.O. Box 176 Fairfield, NC 27826 Tel (252) 333-0249 Fax (252) 926-9983

Albemarle Restorations, LLC P.O. Box 176 Fairfield, NC 27826 (252) 333- 0429

January 18, 2018

Jeff Schaffer Eastern Supervisor/Project Manager State of North Carolina Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 (919) 707 - 8976

Re: Draft Year 2 Monitoring Report for Hudson Property Stream Restoration Project (95361) Tar-Pamlico River Basin; CU 03020105 Beaufort County, NC Contract No. 004638

Dear Mr. Schaffer:

This letter is in response to your comments concerning the review of the Draft Monitoring Year 2 Report and digital submittals. To aid in clarity, your comments are italicized below and followed by a response.

1. The digital data and drawings have been reviewed and determined to meet DMS requirements. However, DMS is calling to your attention that while Albemarle did provide reach breakdowns for each reach, in future submittals, please provide the reach lengths and mitigation approaches as required by contract and stated in DMS's Format, Data Requirements, and Content Guidance for Electronic Drawings Submitted to EEP version 1.0 (03/27/08).

Future submissions will include reach lengths and mitigation approaches as specified by DMS.

2. Section 9.0: The report references the presence of bankfull events during monitoring year 2. Please state whether this is the second year that bankfull events have occurred on the site that would meet the bankfull standard for success.

Bankfull events occurred during Year 1 and Year 2 monitoring. The site is meeting the bankfull standard for success. A note has been added to Section 9.0 to clarify this point.

THINK LIKE A MOUNTAIN [™]

3. Appendix B, CCPV: On the Reach 1 sheet, vegetation plot 4 shows as meeting success while the data says otherwise. Please correct.

Vegetation plot 4 in Appendix B, CCPV Reach 1 sheet has been corrected.

4. Appendix C, Table 7: The "PnoLS" column in Table 7 is for providing the number of planted stems in each vegetation plot, not including live stakes. In looking at this report, is see that Albemarle is including red maple, privet, sweetgum, wax myrtle and loblolly pine which were not listed as planted stems in the Baseline Report. Please review this table and ensure that any volunteer species and/or invasive species are included in the T (total) column only. This could show that more plots that number 4 are not meeting success.

Appendix C, Table 7 has been corrected. Volunteer species and/or invasive species are now represented in the T (total) column only. Stems per acre Only plot number continue to meet requirements except for plot number 4.

5. Appendix D, Table 11 (all): DMS realizes that there are various methods used to calculate Bank Height Ratio from year to year. One of these is to hold the bankfull depth static (denominator) while allowing the Low Top of Bank max depth (numerator) to vary. Another method that has been proposed and is being evaluated is to hold the As-built cross-sectional area static within each year's new cross-section and allow that to determine the max bankfull depth for each year. However, if there are large changes in the W/D ratio either method can make for somewhat distorted BHR values depending upon the direction and magnitude of the change in the W/D ratio. Please update the calculations to reflect changes observed in the overlays and explain in detail as footnote with the tables that describes the method by which Albemarle is calculating Bank Height Ratio and Entrenchment Ratio. In addition, please provide context to any observed changes in these calculated ratios in the report narrative. Albemarle must be prepared to defend the method used for credit release and justify through context whether or not any changes observed in a cross section represent an issue.

After consideration of the protocols and the project, it was decided to hold the As-built crosssectional area static within each year's new cross-section and allow that to determine the max bankfull depth for each year. The geomorphology monitoring data has been updated to reflect this change for Years 1 and 2. Changing the fixed baseline to the cross-sectional area improved our ability to interpret changes from Year 1 to Year 2 and did not reveal any Bankfull Bank Height Ratios of concern. Please see updates to cross sections as well as to Appendix D, Table 11.

THINK LIKE A MOUNTAIN [™]

Table of Contents

1.0 Project Summary1
2.0 Project Goals and Objectives
3.0 Project Success Criteria
3.1 Stream Restoration Performance Standards
3.2 Stream Channel Restoration Stability Performance Standards
3.3 Planted Vegetation Performance Standards
4.0 Site Conditions and Description
5.0 Mitigation Components
6.0 Design Approach
7.0 Construction and Planting Timeline
8.0 Plan Deviations
9.0 Project Performance
10.0 Methods and References
Figure 1 – Vicinity Map4
Appendix A – Background Tables
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts 7
Table 4. Project Information and Attributes
Appendix B – CCPV and Photos
Current Condition Plan View10
Table 5. Visual Stream Morphology Stability Assessment (Reach 1-4) 16
Table 6. Vegetation Condition Assessment Table
Site Photos21
Appendix C – Vegetation Plot Data
Table 7: Vegetation Plot Counts and Densities 26
Appendix D – Stream Measurement and Geomorphology Data27
Cross Sections with Annual Overlays (XS 1-11)
Table 8: Bank Pin Data
Table 10a. Baseline Stream Data Summary (Reach 1-4)40
Table 11a. Monitoring Data – Dimensional Morphology Summary44
Table 11b. Monitoring Data – Stream Reach Data Summary (Reach 1-4)
Table 9: Verification of Bankfull Events 50
Table 9. Verification of Baseflow 50
Figure 2: Monthly Rainfall Data with Percentiles
• •
Figures 3-12: Stream Surface Water Hydrology (Well 1-10)52

1.0 PROJECT SUMMARY

The mitigation area is 13.49 acres located within a larger 106-acre property owned by Charles Hudson. It is located in Beaufort County, NC and the Tar-Pamlico River Basin. Mitigation components include five stream reaches totalling 2,891 linear feet contained within a Conservation Easement. Construction was completed in 2015 and planting completed in 2016. The first of seven monitoring years was initiated in 2016. Year 2 monitoring was completed in November 2017.

2.0 PROJECT GOALS AND OBJECTIVES

The project goals of the Hudson property per the approved mitigation plan are as follows:

- Improve and sustain hydrologic connectivity/interaction and storm flow/flood attenuation.
- Reduce nutrient and sediment stressors to the reach and receiving watershed.
- Provide uplift in water quality functions.
- Improve aquatic and terrestrial habitats (complexity, quality).
- Improve and maintain riparian buffer habitat.

The project goals will be addressed through the following project objectives:

- Implement a sustainable, reference-based, rehabilitation of the reach dimension, pattern, and profile to provide needed capacity and competency.
- Support the removal of barriers to anadromous fish movement and to help improve nursery and spawning habitats.
- Strategically install stream structures and plantings designed to maintain vertical and lateral stability and improve habitat diversity/complexity.
- Provide a sustainable and functional bankfull floodplain feature.
- Enhance and maintain hydrologic connection between stream and adjacent floodplain/riparian corridors.
- Utilize the additional width of the swamp runs to provide natural filters for sediment and nutrients and diffuse flow from upstream runoff.
- Install, augment, and maintain appropriate riparian buffer with sufficient density and robustness to support native forest succession.
- Water quality enhancement through riparian forest planting and woody material installation, and increased floodplain interaction/overbank flooding.
- Restore the existing ditched streams to single and multi-thread headwater systems with forested riparian buffers.
- Provide ecologically sound construction techniques that will require minimal grading and disturbance.

3.0 PROJECT SUCCESS CRITERIA

3.1 Stream Restoration Performance Standards

Single Thread Channels (Reaches 1 - 4) and Swamp Run (Reach 5)

Groundwater monitoring wells are installed in and near the thalweg of all five reaches. The wells are equipped with continuous-reading gauges capable of documenting sustained flow. Per the approved Mitigation Plan, each reach must exhibit water flow for at least 30 consecutive days during years with normal rainfall (demonstrating at least intermittent stream status). All restored channels shall receive sufficient flow through the

monitoring period to maintain an Ordinary High-Water Mark (OHWM). Field indicators of flow events include a natural line impressed on the bank; shelving; changes in soil characteristics; destruction of terrestrial vegetation; presence of litter and debris; wracking; vegetation matted down, bent or absent; sediment sorting; leaf litter disturbed or washed away; scour; deposition; bed and bank formation; water staining; or change in plant community. In addition, two overbank flows shall be documented for each reach during the monitoring period using continuously monitored pressure transducers and crest gauges. All collected data and field indicators of water flow shall be documented in each monitoring report. Seven flow monitoring stations are located on Reaches 1 - 4, three are located in Reach 5.

3.2 Stream Channel Restoration Stability Performance Standards

Headwater System (Reach 5)

All stream areas shall remain stable with no areas of excessive erosion such as evidence of bank sloughing or actively eroding banks due to the exceedance in critical bank height and lack of deep rooted stream bank vegetation.

Single Thread Channels (Reaches 1 - 4)

1. Bank Height Ratio (BHR) shall not exceed 1.2 within restored reaches of the stream channel.

2. Entrenchment Ratio (ER) shall be no less than 2.2 within restored reaches of the stream channel.

3. The stream project shall remain stable and all other performance standards shall be met through two separate bankfull events, occurring in separate years, during the 7-year post construction monitoring period.

4. Three bank pin arrays and 11 cross sections are located on Reaches 1 - 4

3.3 Planted Vegetation Performance Standards

- 1. At least 320 three-year-old planted stems/acre must be present after year three. At year five, density must be no less than 260 five-year-old planted stems/acre. At year 7, density must be no less than 210 seven-year-old planted stems/acre.
- 2. If this performance standard is met by year 5 and stem density is trending toward success (i.e., no less than 260 five-year-old stems/acre) monitoring of vegetation on the site may be terminated provided written approval is provided by the USACE in consultation with the North Carolina Interagency Review Team (NCIRT).
- 3. Thirteen vegetation plot samples are located within the project area.

4.0 SITE CONDITIONS AND DESCRIPTION

The Hudson property is 13.49 acres located in Beaufort County, NC and the Tar-Pamlico River Basin. The majority of the site is used for crop production, primarily corn, soybeans and wheat. As a result of the lowering of local water tables and in some cases the complete elimination of ground and surface water interaction, the degradation of water quality and downstream anadromous fish spawning and nursery habitat has occurred. Hydric soils are present on site, meaning that the pre-existing site conditions were appropriate for raising the water table and re-establishing normal base flow conditions (See Figure 1 -Vicinity Map).

5.0 MITIGATION COMPONENTS

Mitigation components are limited to five reaches: Reach 1: 833 lf; Reach 2: 532 lf; Reach 3: 445 lf; Reach 4: 437 lf; Reach 5: 644 lf, for a total restored stream footage of 2,891linear feet (Table 1).

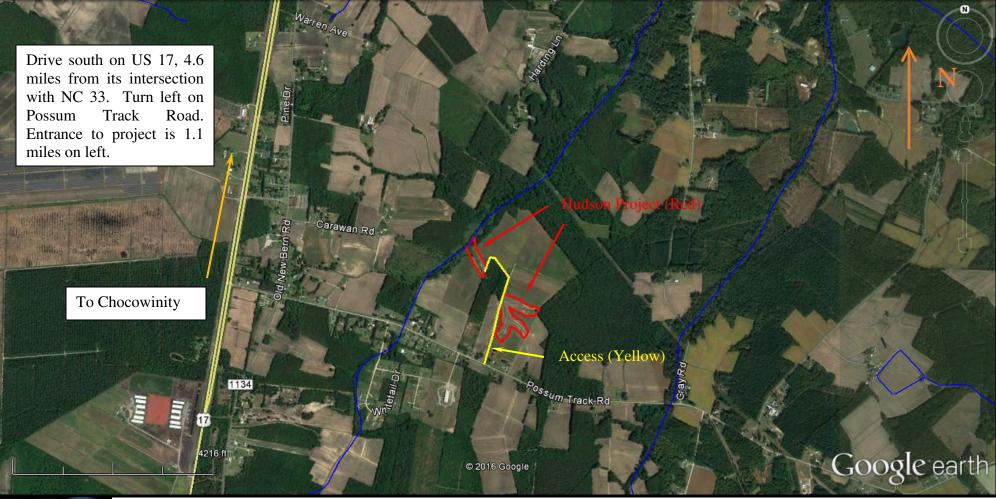
6.0 DESIGN APPROACH

A natural design approach was used to restore the natural sinuosity and flow of the headwater streams which existed prior to channelization. Grading was done to decrease sediment load and erosion rate while allowing for floodplain connectivity and storage for overland flow. Banks were graded down to distribute flow velocity and the banks and riparian buffers were planted to stabilize the channel and create habitat. A combination of Priority 1 and Priority II restoration types were used. Where the proposed channels tie into the existing, non-restored channels, Priority II restoration was used.

7.0 CONSTRUCTION AND PLANTING TIMELINE

Construction commenced in December 2014 with the installation of recommended erosion control practices and was completed in May 2015. Planting was officially concluded in early January 2016. (Table 2 – Project History Table)

8.0 PLAN DEVIATIONS


There were no significant deviations between construction plans and the As-built conditions.

9.0 PROJECT PERFORMANCE

The Hudson stream restoration project is currently meeting functional goals and objectives. Annual monitoring took place in November and revealed the presence of bankfull events, floodplain connectivity, and lateral and vertical stability. In-stream structures were observed to be functioning as intended with minimal scouring of the channel's banks or bed. Bankfull events occurred during Year 1 and Year 2 monitoring. The site is meeting the bankfull standard for success. The entire length of the project is currently exhibiting fully vegetated banks with both herbaceous and woody plants. Overall, woody plantings within the riparian buffer are meeting project goals with some dieback of planted stems and introduction of other woody vegetation in 8 out of 13 vegetation monitoring plots. Year 1 Monitoring identified some areas where woody survivability was low; these areas will be spot planted in December 2017. After planting, stem counts will be verified within plots and a report addendum submitted. Stream gauges indicated base flow and bankfull events at 10 out of 10 locations. Bank pins could not be located due to dense vegetative growth. Aggradation was noted on Reaches 2 and 3, however both reaches remain stable. Stream cross sections are meeting objectives in 11 out of 11 locations. A field meeting with NC Division of Mitigation Services and the USACE in June 2017, identified corrective measures necessary on Reach 5 to raise the stream invert to create a wider swamp run. Regrading was completed in October 2017. No additional corrective measures are necessary and monitoring will continue as scheduled.

10.0 METHODS AND REFERENCES

Monitoring methodology did not differ from the approved Mitigation Plan. Cross-section dimensions were collected using standard survey methods. Vegetation assessment was done according to the Level 2 protocol specified by the Carolina Vegetation Survey. Hydrology monitoring wells were installed per ERDC TN-WRAP-00-02 "Installing Monitoring Wells/Piezometers in Wetlands" dated 2000. Groundwater levels were recorded using the U20-001-01 water level data loggers manufactured by Onset Computer. The loggers were installed in the wells per the manufacturer's instructions.

Figure 1 - Vicinity Map Hudson Stream Mitigation Project

DMS Project #95361 Beaufort County, NC

APPENDIX A: PROJECT BACKGROUND TABLES

Table 1. Project Components and Mitigation Credits

Table 2. Project Activity and Reporting History

Table 3. Project Contacts

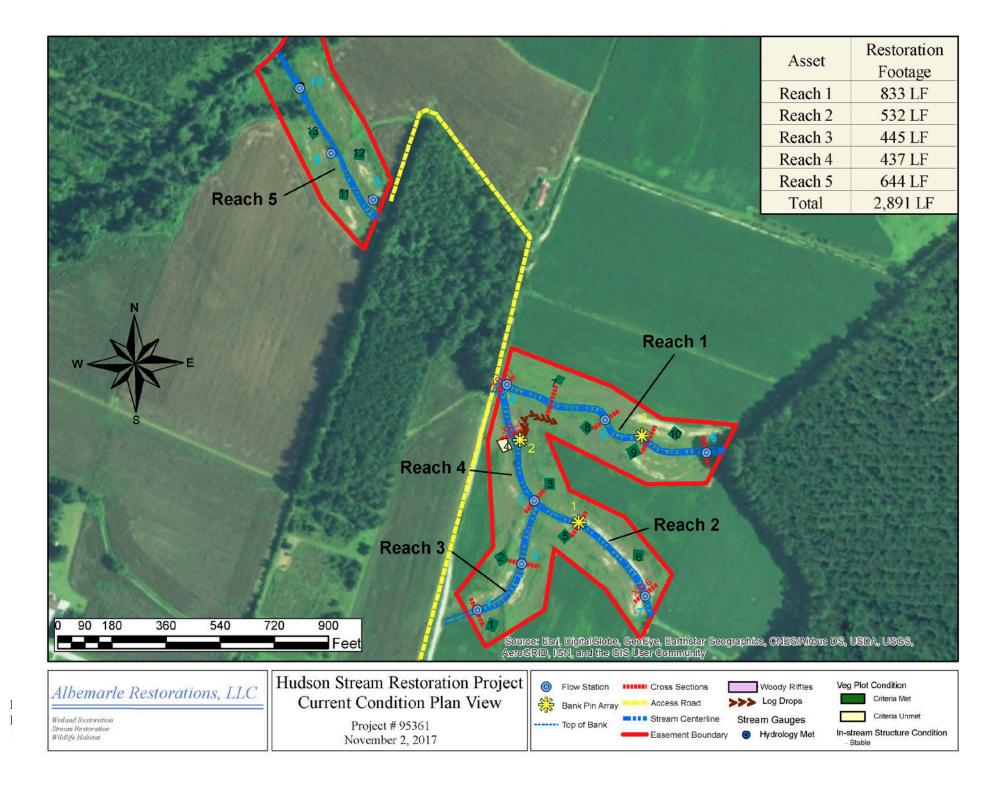
Table 4. Project Information and Attributes

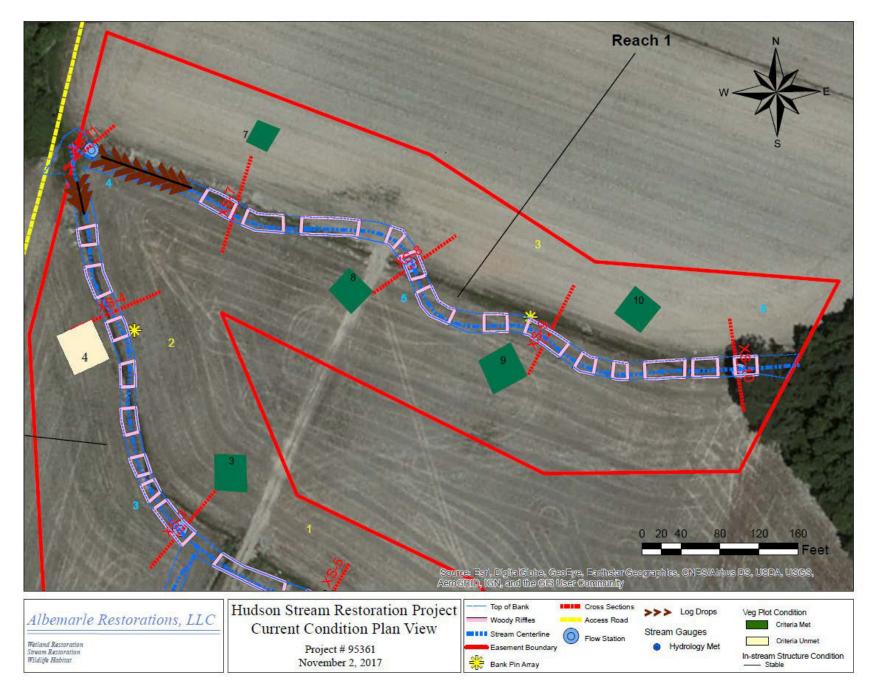
Table 1: Pro Hudson Prop EEP Project	perty, Beau	ufort County	/litigation C	redits								
Mitigation Cree	dits											
	Stream		Ripari	an wetland		on-riparian wetland	Buffer	Nitrogen Nutrient Offset	Phosphorous Nutrient Offset			
Туре	R	RE	R	RE	R	RE						
Totals	2,891											
Project Compo	nents			·					·			
Project Component or Reach ID	omponent r Reach ID			xisting ge/Acreage		Approach I, PII etc.)	Restoration or Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio			
Reach 1			766 LF		PI		Equivalent	833 LF	1:1			
Reach 2			516 LF		PI/P	I		532 LF	1:1			
Reach 3			611 LF		PI/P	I		445 LF	1:1			
Reach 4			503 LF		PI/P	I		437 LF	1:1			
Reach 5			689 LF		PI			644 LF	1:1			
Total			3,085 LF					2,891 LF				
Component Su	mmation											
Restoration L	evel	Stream		an Wetland		on-riparian	Buf	-	Upland			
	_	(linear feet)	,	acres)	We	tland (acres)	(square	e feet)	(acres)			
			Riverine	Non- riverine								
Restoration		2,891 LF										
Enhancement	t											
Enhancement	tl											
Enhancement	tll											
Creation												
Preservation												
BMP Elements	I		1	1	_1							
Element Location				Purpo	se/Function	Notes						
FB		ljacent to strea	am		Buffer			ither side of strea	am centerline			
		,										

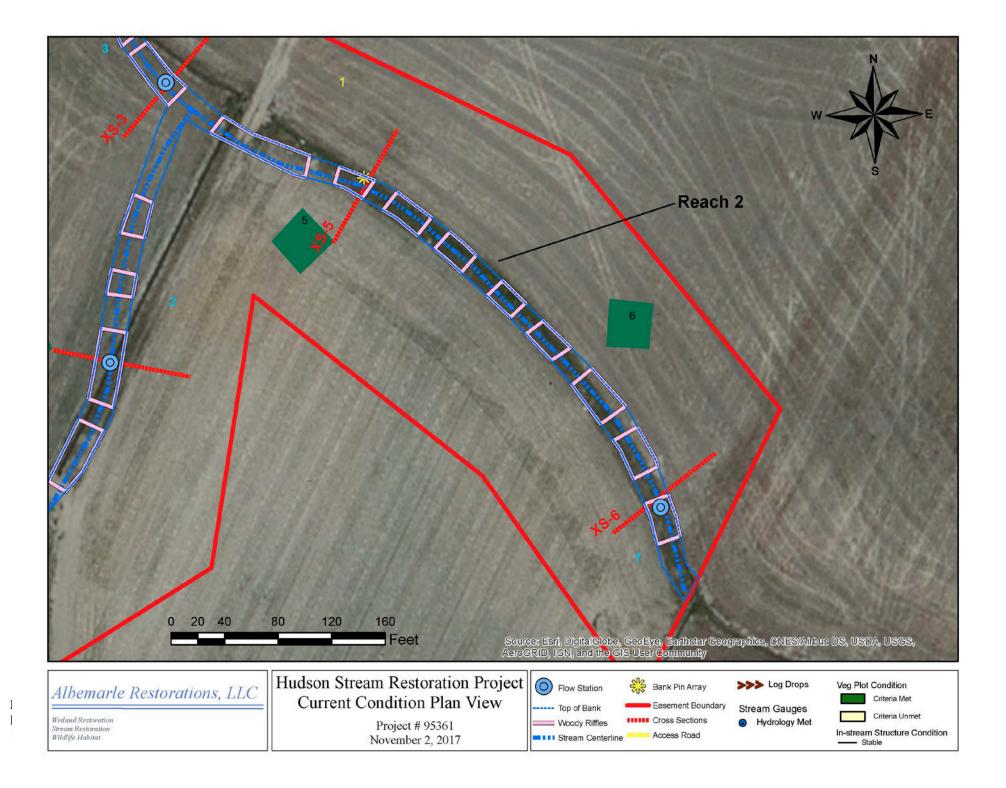
Table 2: Project Activity and Reporting History Hudson Property- EEP Project Number 95361		
Activity, Deliverable, or Milestone	Data Collection Complete	Actual Completion or Delivery
Project Institution	N/A	June 2012
Mitigation Plan	July 2014	Oct 2014
Permits Issued	March 2013	May 2014
Final Design Construction	March 2013	May 2014
Construction	N/A	May 2015
Containerized, Bare Root, and B&B Planting	N/A	January 2016
Baseline Monitoring Document (Year 0 - Baseline)	January 2016	August 2016
Year 1 Monitoring	September 2016	Final: January 2017
Year 2 Monitoring	November 2017	December 2017
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		
Year 6 Monitoring		
Year 7 Monitoring		

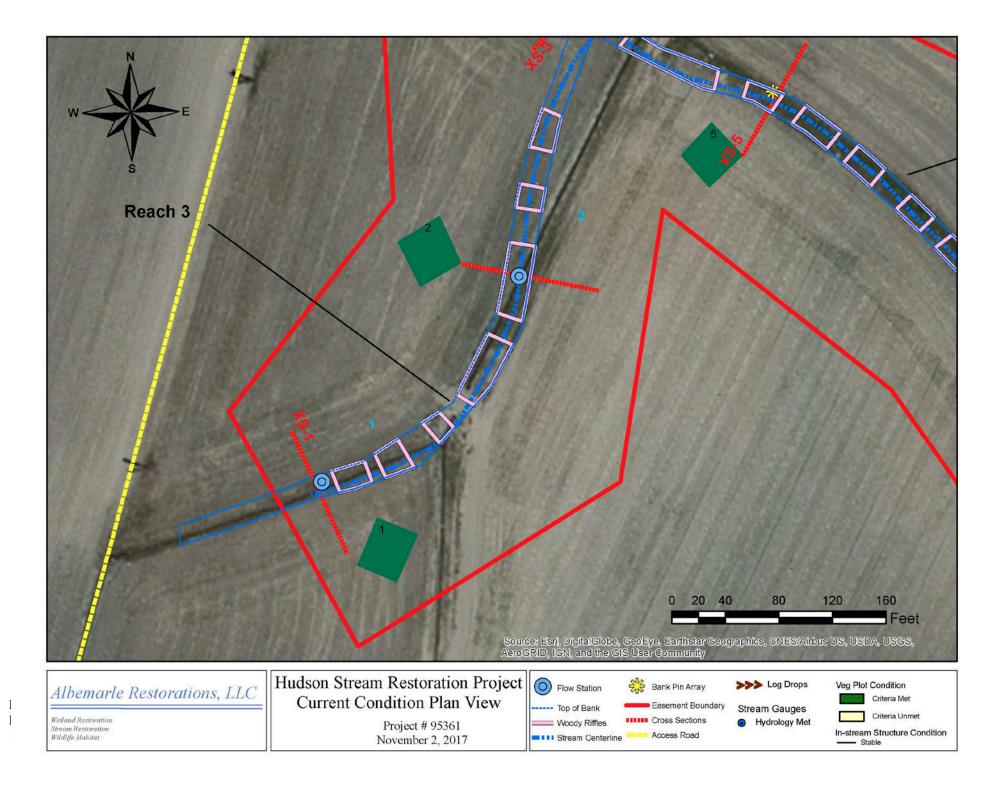
Table 3: Project Contacts	
Hudson Property- EEP Project Numb	er: 95361
Primary Project Design POC	Ecotone, Inc.
	Scott McGill (410) 420-2600
	P.O. Box 5, Jarrettsville, MD 21084
Construction Contractor POC	Riverside Excavation, Inc.
	Car Baynor (252) 943-8633
Survey Contractor POC	True Line Surveying
	Curk Lane (919) 359-0427
Planting and Seeding Contractor	Carolina Silvics, Inc.
POC	Mary Margaret McKinney (252) 482-8491
	908 Indian Trail Road, Edenton, NC 27932
Seed Mix Sources	Ernst Conservation Seeds, LLP, Meadville, PA
Nursery Stock Suppliers	Carolina Silvics, Inc.
Monitoring Performers	Ecotone, Inc.
Stream and Vegetation POC	Scott McGill (410) 420-2600
	P.O. Box 5, Jarrettsville, MD 21084

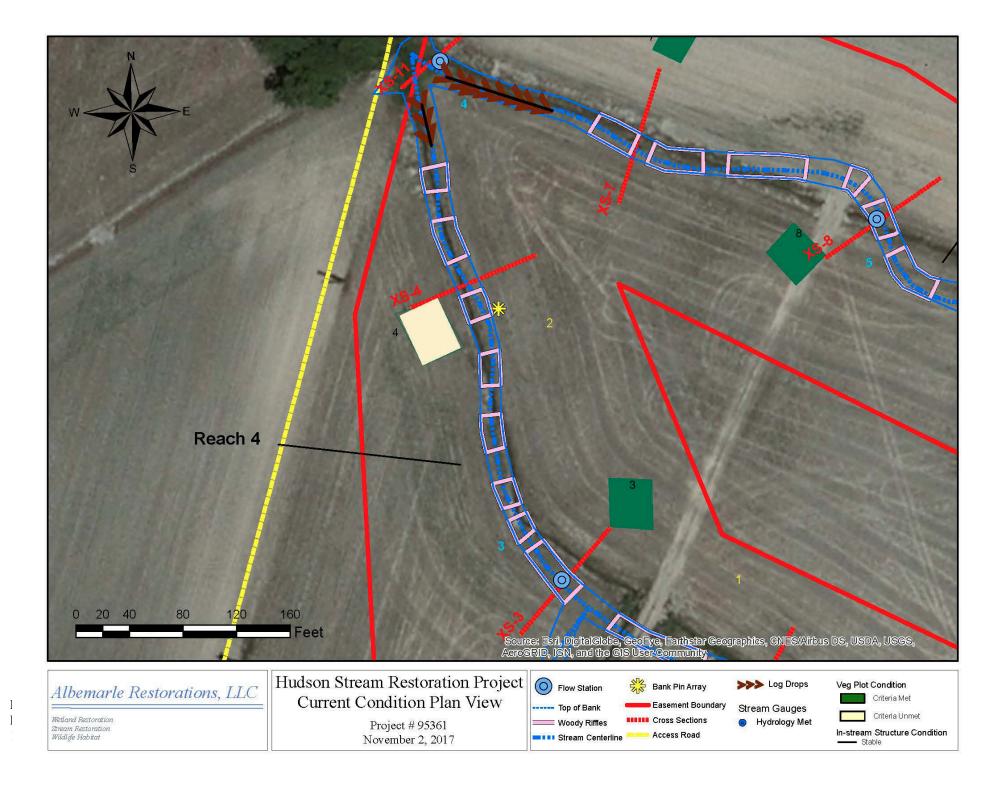
Table 4: Project information	_												
Hudson Property- EEP Project Number: 953													
Project name	HUDSON PROPE												
County	BEAUFORT												
Project Area (ac)	13.4 AC	N / 25° 26"		N									
Project Coordinates (Lat and Long)	77° 06″ 13.62′ W / 35° 26″ 53.20′ N												
4.1 Project Watershed Summary Information													
Physiographic province	INNER COASTAL PLAIN												
River basin	TAR-PAMLICO R			I									
USGS Hydrologic Unit 8- 03020104 digit	USGS Hydrologi	c Unit 14-di	git	0302	20104010010								
DWQ Sub-basin	CHOCOWINITY	CREEK – HO	RSE B	RANCH									
Project Drainage Area (acres)	190.86												
Project Drainage Area Percentage of Impervious Area	1.2 % (2.24 ac	res)											
CGIA Land Use Classification	2.01.01.07 An	nual Row Cr	op Ro	tation									
	4.2 Reach Sum												
Parameters	Reach 1	Reach		Reach 3	Reach 4	Reach 5							
Length of reach (linear feet)	766	516		611	503	689							
Valley classification	VIII	VIII		VIII	VIII	VIII							
Drainage area (acres)	40.51	74.63		35.21	150.35	190.86							
NCDWR stream identification score	20.75	20.75		20.75	20.75	28							
NCDWR Water Quality Classification	C;NSW	C;NSW	/	C;NSW	C;NSW	C;NSW							
Morphological Description (stream type)	G5-G6	G5-G6	;	G5-G6	G5-G6	G5-G6							
Evolutionary trend	Early (CEM)	Early (C	CEM)	Early (CEM)	Early (CEM)	Early (CEM)							
Underlying mapped soils	GoA & CrB	CrB	& Ly	CrB & Ly	CrB	CrB & Me							
Drainage class	MW	MW 8	& SP	MW & SP	MW	MW & P							
Soil Hydric status	Non-Hydric	Non-H	ydric	Non-Hydric	Non-Hydric	Hydric							
Slope (ft/ft)	0.009	0.006	5	0.008	0.004	0.003							
FEMA classification	N/A	N/A		N/A	N/A	AE/X							
Native vegetation community	Pasture/Crop	Pasture/	′Crop	Pasture/Crop	Pasture/Crop	Pasture/Crop							
Percent composition of exotic invasive vegetation	N/A	N/A		N/A	N/A	N/A							
	4.3 Regulator	v Considera	ations		L								
Regulation	Applica	-		Resolved?	Suppo Docui								
Waters of the United States – Section 404	YES		YES		Supporting D								
Waters of the United States – Section 401	YES		YES		SAW-2012-0								
Endangered Species Act	NO		YES		NA								
Historic Preservation Act	NO		YES		NA								
Coastal Zone Management Act (CZMA)/	NO		YES										
Coastal Area Management Act (CAMA)					NA								
FEMA Floodplain Compliance	NO		YES NA										
Essential Fisheries Habitat	NO YES NA												


APPENDIX B: VISUAL ASSESSMENT DATA


Current Condition Plan View


Table 5. Visual Stream Morphology Stability Assessment (Reach 1-4)


Table 6. Vegetation Condition Assessment Table


Site Photos

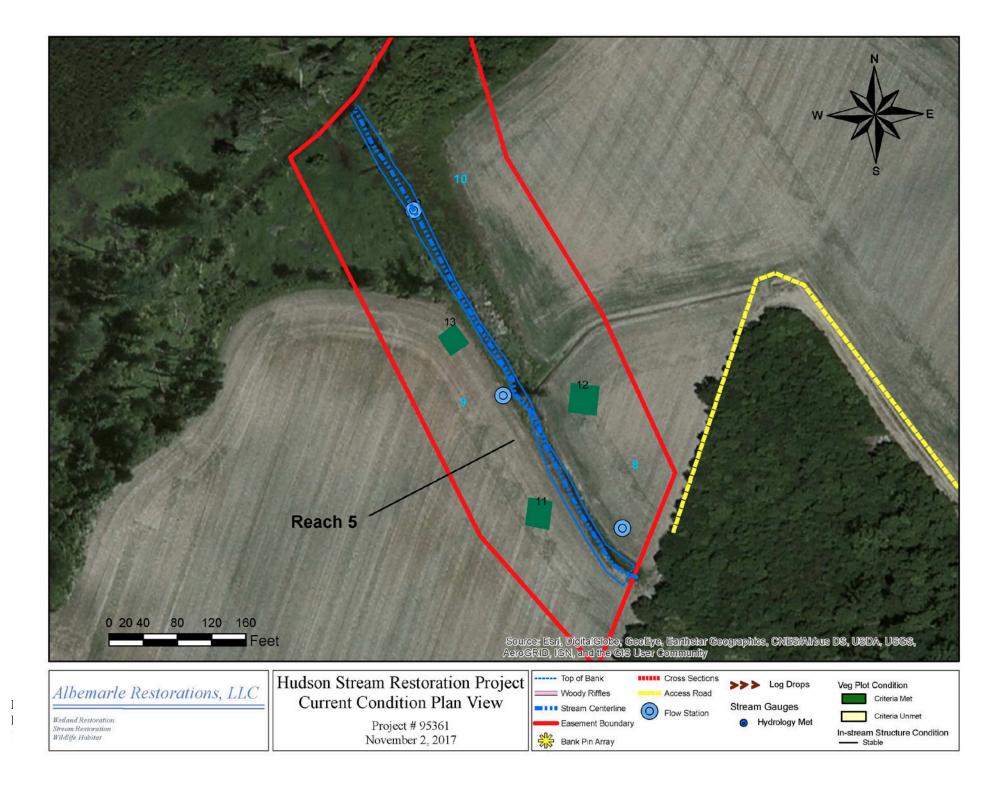


Table 5		Visual Stream Morphology Stability Assessment								
Reach ID		Reach 1								
Assessed L	ength	766								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Woody
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	13	13			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	5	5			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	5	5			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	NA*	NA*			NA*			
		2. Thalweg centering at downstream of meander (Glide)	NA*	NA*			NA*			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5		Visual Stream Morphology Stability Assessment								
Reach ID		Reach 2								
Assessed L	ength	516								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	9	9			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	3	3			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	3	3			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	NA*	NA*			NA*			
		2. Thalweg centering at downstream of meander (Glide)	NA*	NA*			NA*			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

* Stream's narrow width, layout, and heavily vegetated banks make this attribute not applicable.

Table 5		Visual Stream Morphology Stability Assessment								
Reach ID		Reach 3								
Assessed L	ength	611								
Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Woody
1. Bed	1. Vertical Stability	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
	2. <u>Degradation</u> - Evidence of downcutting				0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	7	7			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	3	3			100%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	3	3			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	NA*	NA*			NA*			
		2. Thalweg centering at downstream of meander (Glide)	NA*	NA*			NA*			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0		-	NA			-
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

Table 5		Visual Stream Morphology Stability Assessment								
Reach ID		Reach 4								
Assessed Le	ength	503								
	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	8	8			NA			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	3	3			NA			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	3	3			NA			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	NA*	NA*			NA			
		2. Thalweg centering at downstream of meander (Glide)	NA*	NA*			NA			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	3			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	3	3			NA			

* Stream's narrow width, layout, and heavily vegetated banks make this attribute not applicable.

Table 6	Vegetation Condition Assessment					
Planted Acreage	12.42					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons		% of Planted Acreage
			Pattern			
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	and Color	0	0	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY 3, 4 or 5 stem count criteria	0.1 acres	Pattern and Color	0	0	0.0%
			Total:	0	0	0.0%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year	0.25 acres	Pattern and Color	0	0	0.0%
		Cumu	lative Total:	0	0	0.0%
Easement Acreage	13.5					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons		% of Planted Acreage
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale	1000 sf	Pattern and Color	0	0	0.0%
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale	none	Pattern and Color	0	0	0.0%
No areas of concern are noted .						

Photo 1: Highly vegetated restoration area along Reach 2 - View North

Photo 2: View Upstream on Reach 3

Photo 3: View of Reach 5 upstream

Photo 4: View of vegetation plot

APPENDIX C: VEGETATION PLOT DATA

Table 7: Vegetation Plot Counts and Densities

EEP Project Code 0004638	s. Project Name: Hudson	n																
								Cur	rent Plo	ot Data	(MY2 2	017)						
			0004	638-01	-0001	0004	0004638-01-0002			0004638-01-0003			0004638-01-0004			0004638-01-0005		
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	
Acer rubrum	red maple	Tree																
Ligustrum vulgare	European privet	Exotic																
Liquidambar styraciflua	sweetgum	Tree			1			1						1			2	
Liriodendron tulipifera	tuliptree	Tree	1	1	2				2	2	2							
Morella cerifera	wax myrtle	shrub																
Pinus taeda	loblolly pine	Tree			5				1	1	2			5			1	
Platanus occidentalis	American sycamore	Tree	3	3	3	4	4	4	4	4	4				2	2	2	
Quercus alba	white oak	Tree	1	1	5	3	3	3										
Quercus bicolor	swamp white oak	Tree	4	4	4	2	2	2							1	1	1	
Quercus michauxii	swamp chestnut oak	Tree																
Quercus nigra	water oak	Tree													2	2	2	
Quercus phellos	willow oak	Tree	2	2	2	1	1	3	2	2	2				5	5	5	
		Stem count	11	11	22	10	10	13	9	9	10	0	(0 6	10	10	13	
		size (ares)) 1				1			1			1			1		
		size (ACRES)	0.02		0.02		0.02		0.02		0.02							
		Species count	5	5	7	4	4	5	4	4	4	0	() 2	4	4	6	
		Stems per ACRE	445.2	445.2	890.3	404.7	404.7	526.1	364.2	364.2	404.7	0	(242.8	404.7	404.7	526.1	

Table 7: Vegetation Plot Counts and Densities EEP Project Code 0004638. Project Name: Hudson

							_		-				_	_	_	_	_
			0004	638-01	-0001	0004	1638-01	-0002	0004	638-01	-0003	0004	4638-01	-0004	0004	4638-01	-0005
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Acer rubrum	red maple	Tree															
Ligustrum vulgare	European privet	Exotic															
Liquidambar styraciflua	sweetgum	Tree			1	L		1						1			
Liriodendron tulipifera	tuliptree	Tree	1	1	2	2			2	2	2	-	1				
Morella cerifera	wax myrtle	shrub															
Pinus taeda	loblolly pine	Tree			5	5			1	1	2	1	1	5			
Platanus occidentalis	American sycamore	Tree	3	3	3	8 4	4	4	4 4	4	4	F			2	2	:
Quercus alba	white oak	Tree	1	1	5	3	3	3	5				1				
Quercus bicolor	swamp white oak	Tree	4	4	. 4	4 2	2	2	2						1	. 1	
Quercus michauxii	swamp chestnut oak	Tree															
Quercus nigra	water oak	Tree													2	2	:
Quercus phellos	willow oak	Tree	2	2	2	2 1	. 1	. 3	2	2	2	2			5	5 5	,
		Stem count	: 11	11	22	2 10	10	13	9	9	10	0 0	0 0	6	5 10	0 10	1
		size (ares))	1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02		0.02		
		Species count	: 5	5	7	4 4	4	5	5 4	4	4	1 O	0 0	2	. 4	4	ł
		Stems per ACRE	445.2	445.2	890.3	404.7	404.7	526.1	364.2	364.2	404.7	7 0	0 0	242.8	404.7	404.7	526
EEP Project Code 00046	38. Project Name: Hud	son															
								Curr	ent Plo	t Data	(MY2 2	2017)					

EEP Project Code 000463	8. Project Name: Huds	on															
						-		Curr	ent Plo	t Data	(MY2 2	2017)		•			
			0004	638-01	-0006	0004	638-01·	-0007	00046	538-01-	8000	0004	638-01	-0009	0004	638-01	-0010
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т
Acer rubrum	red maple	Tree															
Ligustrum vulgare	European privet	Exotic															
Liquidambar styraciflua	sweetgum	Tree			1												
Liriodendron tulipifera	tuliptree	Tree													9	9	ç
Morella cerifera	wax myrtle	shrub															
Pinus taeda	loblolly pine	Tree			6									7			2
Platanus occidentalis	American sycamore	Tree	2	2	2	6	6	6	5	5	5	2	2	2			2
Quercus alba	white oak	Tree															
Quercus bicolor	swamp white oak	Tree				4	4	4				1	1	1			
Quercus michauxii	swamp chestnut oak	Tree							1	1	1				1	1	. 1
Quercus nigra	water oak	Tree							4	4	4	4	4	4			
Quercus phellos	willow oak	Tree	6	6	7	3	3	3	2	2	2	2	2	2	2	2	4
		Stem count	8	8	16	13	13	13	12	12	12	9	9	16	12	12	18
		size (ares)		1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	2	2	4	3	3	3	4	4	4	4	4	5	3	3	5
	St	tems per ACRE	323.7	323.7	647.5	526.1	526.1	526.1	485.6	485.6	485.6	364.2	364.2	647.5	485.6	485.6	728.4

					Cur	rent Plo	t Data	(MY2 2	017)						Anı	nual Me	ans			
			0004	638-01-	0011	0004	638-01-	0012	0004	638-01	-0013	M	Y2 (201	.7)	M	IY1 (201	6)	М	YO (201	.6)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	т
Acer rubrum	red maple	Tree						9						9						
Ligustrum vulgare	European privet	Exotic									1			1						
Liquidambar styraciflua	sweetgum	Tree												6						
Liriodendron tulipifera	tuliptree	Tree	2	2	2	1	1	3				15	15	18	12	12	12	31	31	31
Morella cerifera	wax myrtle	shrub			2									2						
Pinus taeda	loblolly pine	Tree			10			15				1	1	53						
Platanus occidentalis	American sycamore	Tree	10	10	12	1	1	1	4	4	4	43	43	47	44	44	47	54	54	54
Quercus alba	white oak	Tree				1	1	1	5	5	5	10	10	14	12	12	12	16	16	16
Quercus bicolor	swamp white oak	Tree	2	2	2	3	3	3				17	17	17	19	19	19	19	19	19
Quercus michauxii	swamp chestnut oak	Tree	1	1	2	3	3	3	5	5	5	11	11	12	8	8	8	13	13	13
Quercus nigra	water oak	Tree	3	3	4	1	1	1				14	14	15	11	11	11	18	18	18
Quercus phellos	willow oak	Tree										25	25	30	24	24	25	33	33	33
		Stem count	18	18	34	10	10	36	14	14	15	136	136	224	130	130	134	184	184	184
		size (ares)		1			1			1			13			13			13	
		size (ACRES)		0.02			0.02			0.02			0.32			0.32			0.32	
		Species count	5	5	7	6	6	8	3	3	4	8	8	12	7	7	7	7	7	7
		Stems per ACRE	728.4	728.4	1376	404.7	404.7	1457	566.6	566.6	607	423.4	423.4	697.3	404.7	404.7	417.1	572.8	572.8	572.8

Table 7: Vegetation Plot Counts and Densities (Continued) EEP Project Code 0004638. Project Name: Hudson

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

APPENDIX D: STREAM MEASUREMENT AND GEOMORPHOLOGY DATA

Cross Sections with Annual Overlays (XS 1-11)

Table 8: Bank Pin Data

Table 10a. Baseline Stream Data Summary (Reach 1-4)

Table 11a. Monitoring Data – Dimensional Morphology Summary

Table 11b. Monitoring Data – Stream Reach Data Summary (Reach 1-4)

						N4 **		1 (D1)			0.00					
STATION	ELEVATION					Monit	oring XS	1 (Pool)	- REAC	H 3 STA	u+09					
0+00	42.91		46													
0+25	40.40															
0+40	38.60		44													
0+46.5	38.04															
0+48	37.85															
0+50	37.54		42	_	\mathbf{i}											
0+52	38.05	臣														
0+54	38.16	Elevation	40 +											-		
0+60	38.85	ion														
0+75	40.15		38													
1+00	41.91		50													
			36										-		_	
															_	
			34	-50	-40	-30 -	20 -:	10 0) 1	0 20		0	40	50	60	
				STRE/	АМ ТҮРЕ	C5/6		Scale: 1 tical Exag								
		_			AM TYPE			Scale: 1	." = 20'			bilating .		ulte	wale.	
	LEGEN			SUMMA		(FT)		Scale: 1	." = 20'	n:5x			and the second			
	LEGEN	AS-BUILT GRADE		SUMMA BANKF	ARY DATA FULL ELEV	(FT)	Ver	Scale: 1 tical Exag	" = 20' geration	n:5x						
	LEGEN	AS-BUILT GRADE YEAR 1 MONITO	RING GRADE	SUMMA BANKF BANKF	ARY DATA FULL ELEV	(FT) ATION: SS SECTIO	Ver	Scale: 1 tical Exag	" = 20' ggeration 38.33	n:5x						
	LEGEN	AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITOF	RING GRADE RING GRADE	SUMMA BANKF BANKF BANKF	ARY DATA FULL ELEV FULL CROS FULL WID	(FT) ATION: SS SECTIO	Ver	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA	RING GRADE RING GRADE ATION	SUMMA BANKF BANKF BANKF FLOOD	ARY DATA FULL ELEV FULL CROS FULL WID	(FT) ATION: SS SECTIO TH: AREA ELEV	Ver	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITOF	RING GRADE RING GRADE ATION	SUMMA BANKF BANKF FLOOD FLOOD	ARY DATA FULL ELEV FULL CROS FULL WID O PRONE A	(FT) ATION: SS SECTIO TH: AREA ELEV	NAL AREA	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37 39.12	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA	RING GRADE RING GRADE ATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D	ARY DATA FULL ELEV FULL CROS FULL WID PRONE A PRONE A DEPTH AT	(FT) /ATION: SS SECTIO TH: AREA ELEV. WIDTH:	NAL AREA	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37 39.12 27.4 0.79 0.32	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA	RING GRADE RING GRADE ATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D MEAN W/D F	ARY DATA FULL ELEV FULL CROS FULL WID PRONE A PRONE A DEPTH AT DEPTH A RATIO:	(FT) ATION: SS SECTIO TH: AREA ELEV NIDTH: BANKFULL T BANKFUL	NAL AREA	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37 39.12 27.4 0.79 0.32 NA	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA FLOODPRONE EL	RING GRADE RING GRADE ATION LEVATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D MEAN W/D F ENTRE	ARY DATA FULL ELEV FULL CROS FULL WID O PRONE A O PRONE A O PRONE A DEPTH AT DEPTH A RATIO: ENCHMEN	(FT) YATION: SS SECTIO TH: AREA ELEV WIDTH: BANKFULL T BANKFULL T RATIO:	NAL AREA	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37 39.12 27.4 0.79 0.32 NA NA	n:5x						
		AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA	RING GRADE RING GRADE ATION LEVATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D MEAN W/D F ENTRE	ARY DATA FULL ELEV FULL CROS FULL WID PRONE A PRONE A DEPTH AT DEPTH A RATIO:	(FT) YATION: SS SECTIO TH: AREA ELEV WIDTH: BANKFULL T BANKFULL T RATIO:	NAL AREA	Scale: 1 tical Exag	" = 20' ggeration 38.33 4.00 12.37 39.12 27.4 0.79 0.32 NA	n:5x						
ite: annel has a	aggraded as antici	AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA FLOODPRONE EL	RING GRADE RING GRADE ATION LEVATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D MEAN W/D F ENTRE BANK	ARY DATA FULL ELEV FULL CROS FULL WID O PRONE A O PRONE A	(FT) YATION: SS SECTIO TH: AREA ELEV WIDTH: BANKFULL T BANKFULL T RATIO:	Ver	Scale: 1 tical Exag	" = 20' geration 38.33 4.00 12.37 39.12 27.4 0.79 0.32 NA NA 1 STO ITORII Γ # 95.	n:5x PRAT NG XS 1 361		PR	OJE	CT		SHEET:
annel has a	aggraded as antici	AS-BUILT GRADE YEAR 1 MONITO YEAR 2 MONITO BANKFULL ELEVA FLOODPRONE EL	RING GRADE RING GRADE ATION LEVATION	SUMMA BANKF BANKF FLOOD FLOOD MAX D MEAN W/D F ENTRE BANK	ARY DATA FULL ELEV FULL CROS FULL WID O PRONE A O PRONE A	(FT) VATION: SS SECTIO TH: AREA ELEVA WIDTH: BANKFULL T BANKFULL T RATIO: RATIO:	Ver	Scale: 1 tical Exag	" = 20' geration 38.33 4.00 12.37 39.12 27.4 0.79 0.32 NA NA 1 STO ITORII Γ # 95.	n:5x		PR	OJE	CT		SHEET: 1 of :

	ELEVATION					
0+00	39.96		Monitoring XS 2 (Riffle) - REACH 3 STA	A 2+41	
0+25	37.7	42				
0+39	36.87					
0+42	36.4	40				
0+44	36.18					
0+44.5	36.19					
0+46	36.68	<u> </u>				
0+48	35.52	Elevation 36				
0+50	35.81	9 ₃₆				
0+52	35.81					
0+55	36.31	34				
0+59	36.65	54				
0+75	38.09					
1+00	40.04	32 -60	-50 -40 -30 -20 -10	0 10 2	0 30 40 50 60	_
	LEGEN					
		AS-BUILT GRADE	STREAM TYPE C5/6		. wardt a	
			SUMMARY DATA (FT)	36.56		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE	SUMMARY DATA (FT) BANKFULL ELEVATION:	36.56		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE	SUMMARY DATA (FT)	7.07		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA:			
		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH:	7.07 16.33		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION:	7.07 16.33 37.6		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH:	7.07 16.33 37.6 42.8		
oss section dis	plays survey errol	AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH: MAX DEPTH AT BANKFULL:	7.07 16.33 37.6 42.8 1.04		
oss section dis		AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH: MAX DEPTH AT BANKFULL: MEAN DEPTH AT BANKFULL:	7.07 16.33 37.6 42.8 1.04 0.43		
oss section dis	plays survey errol	AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH: MAX DEPTH AT BANKFULL: MEAN DEPTH AT BANKFULL: W/D RATIO:	7.07 16.33 37.6 42.8 1.04 0.43 37.73		
oss section dis	plays survey erroi stable and functi	AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY DATA (FT) BANKFULL ELEVATION: BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH: FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH: MAX DEPTH AT BANKFULL: MEAN DEPTH AT BANKFULL: W/D RATIO: ENTRENCHMENT RATIO: BANK HEIGHT RATIO: HUDSON STREAN YEAR	7.07 16.33 37.6 42.8 1.04 0.43 37.73 2.25 1	KS 2	SHEET:

0+00 0+20 0+44 0+46 0+47 0+48 0+50 0+52 0+54	37.28 36.04 34.68 34.50 34.45 34.23		40			Monitoring XS 3 (Riffle) - REACH 4 STA 0+24											
0+44 0+46 0+47 0+48 0+50 0+52	34.68 34.50 34.45		40 -					5	- (-	-							
0+46 0+47 0+48 0+50 0+52	34.50 34.45		-														
0+47 0+48 0+50 0+52	34.45																
0+48 0+50 0+52			38 -														_
0+50 0+52	34.23		_														_
0+52			<u>т</u> 36 –														
	33.96		Elevation 34							L							
0+54	34.10		atio														
	34.45		⊐ ₃₄ –														
0+70	35.67		_							· · · · ·							-
1+00	37.97		32 —														_
			_														_
			30 +60) -5	0 -4	40 -	-30 -2	20 -	-10	0	10	20	30	40	50	<u> </u>	60
			-00	2		10 -			e From S	-			50	UF	JU	,	00
										1" = 20'							
								Ver	rtical Exa								
	LEGEN	D															
		AS-BUILT GRADE	STREA	М ТҮРЕ	C5/	/6								and the second states of the	Lat. In		
		AS-BUILT GRADE YEAR 1 MONITORING GRADE	STREA		,	/6				W WARDS		adhill					a del
				DATA (FT	ſ)	/6		34.58									
		YEAR 1 MONITORING GRADE		DATA (FT ELEVATI	「) (ON:			34.58 3.17									1
		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE	SUMMARY E BANKFULL	DATA (FT ELEVATI CROSS S	T) ION: SECTION		:					MA					
		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY E BANKFULL BANKFULL	DATA (FT ELEVATI CROSS S WIDTH:	T) ION: SECTION	AL AREA		3.17									
		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY I BANKFULL BANKFULL BANKFULL	DATA (FT ELEVATI CROSS S WIDTH: DNE ARE/	T) ION: SECTION	AL AREA		3.17 10.59		i i i i i i i i i i i i i i i i i i i							
		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY D BANKFULL BANKFULL BANKFULL FLOOD PRC	DATA (FT ELEVATI CROSS S WIDTH: DNE ARE/ DNE WID	T) ION: SECTION A ELEVAT	AL AREA		3.17 10.59 35.18									
Note:		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION	SUMMARY D BANKFULL BANKFULL BANKFULL FLOOD PRO	DATA (FT ELEVATI CROSS S WIDTH: DNE ARE/ DNE WID H AT BAN	T) TON: DECTION A ELEVAT DTH: NKFULL:	AL AREA		3.17 10.59 35.18 29.01				I					
Minor incision o		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY D BANKFULL BANKFULL BANKFULL FLOOD PRC FLOOD PRC MAX DEPTH	DATA (FT ELEVATI CROSS S WIDTH: DNE ARE/ DNE WID H AT BAN TH AT BA	T) TON: DECTION A ELEVAT DTH: NKFULL:	AL AREA		3.17 10.59 35.18 29.01 0.62				P					
Minor incision o		YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION FLOODPRONE ELEVATION	SUMMARY D BANKFULL BANKFULL FLOOD PRO FLOOD PRO MAX DEPTH MEAN DEPT	DATA (FT ELEVATI CROSS S WIDTH: DNE ARE/ DNE WID H AT BAN TH AT BAN D:	T) SECTION A ELEVAT OTH: NKFULL: ANKFULL	AL AREA		3.17 10.59 35.18 29.01 0.62 0.30				I					

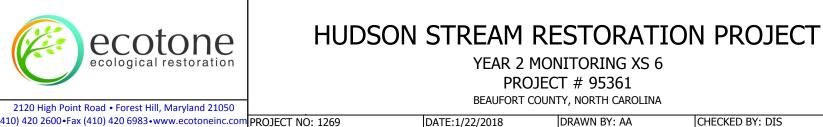
STATION	ELEVATION			Monitoring VC 4 (Decl)		
0+00	35.73			Monitoring XS 4 (Pool)	- KEACH 4 STA 2+69	
0+20	34.20		40			
0+25	33.73					
0+27	33.69		38			
0+29	33.60					
0+30	33.33					
0+32	33.36					
0+33	32.90					
0+35	33.53		9 ₃₄			
0+37	33.83					
0+40	33.90		32			
0+60	34.82		52			
0+84	36.83					
			30 -50 -40 -30	-20 -10 0	10 20 30 4	0 50 60
	LEGEN	D AS-BUILT GRADE	STREAM TYPE C5/6		AL STREET, AND	And the Property of the Property of the
		YEAR 1 MONITORING GRADE	SUMMARY DATA (FT)			
		YEAR 2 MONITORING GRADE	BANKFULL ELEVATION:	33.75		
		BANKFULL ELEVATION	BANKFULL CROSS SECTIONAL AREA:	3.19		× Alter
		FLOODPRONE ELEVATION	BANKFULL WIDTH:	11.61		STR.
			FLOOD PRONE AREA ELEVATION:	34.6		
			FLOOD PRONE WIDTH:	40.4		
			MAX DEPTH AT BANKFULL:	0.85		
			MEAN DEPTH AT BANKFULL:	0.27		
			W/D RATIO:	NA		
			ENTRENCHMENT RATIO:	NA		
			BANK HEIGHT RATIO:	0.99		
æ		al restoration		RESTORATI MONITORING XS 4 DJECT # 95361		SHEET:
2120 High Po	int Road • Forest F	Hill, Maryland 21050		COUNTY, NORTH CAROLINA		4 of 11
		•www.ecotoneinc.com PROJECT NC	D: 1269 DATE:1/22/2018	DRAWN BY: AA	CHECKED BY: DIS	

STATION	ELEVATION				Monito	oring XS	5 (Pool)	- REAC	CH 2 STA	3+95				
0+00	38.98		42											
0+25	37.61		72											
0+37.5	36.45													_
0+50	35.61		40											
0+53	34.89													
0+55	35.04		m 38											
0+57	35.44		leva											
0+70	36.41		Elevation 36											
0+75	36.78		<u>⊐</u> 36 –											
1+00	38.80							1						
			34											
			32											
			-60 -	50 -40	-30 -2	.0 -1	.0 0) 1	0 2	0 30	0	40	50	6
					I	Distance			enterline					
						Vort	Scale: 1							
						vert	ical Exag	yyeratio	1.5X					
	LEGEN	D	STREAM TYPE	C5/6										
		AS-BUILT GRADE	i	· · · ·			2		À			AND R.	antes the des	ණ ක්ර
		YEAR 1 MONITORING GRADE	SUMMARY DATA (FT)				4		THE .	- ANAMA	Reality	and Alana	Editation	
		YEAR 2 MONITORING GRADE	BANKFULL ELEVATIO	N:		35.68		a la	4 162-14	神法法	12 4 19 6	E Carry	Staller -	
		BANKFULL ELEVATION	BANKFULL CROSS SE	CTIONAL AREA:		4.00		AT IN	AN AN	P. M.	Y.	1 Ale		A STATE
		FLOODPRONE ELEVATION	BANKFULL WIDTH:			11.04						p-		- i
			FLOOD PRONE AREA	ELEVATION:		36.38			A A A					NA.
			FLOOD PRONE WIDT	H:		33.5		MAR						
			MAX DEPTH AT BANK	FULL:		0.79								
			MEAN DEPTH AT BAN	IKFULL:		0.36					UDY			
			W/D RATIO:			NA		A de la						
			ENTRENCHMENT RAT	TIO:		NA		TS /						
			BANK HEIGHT RATIO):		1								Contra la
														_
(1) C			HUDSON S	STRFAM	RES	TOP	ΔΤΤ			IFCT	•			
10:) ecc	al restoration							INO.					
	ecologica	al restoration			2 MONIT							SH	HEET:	
			PROJECT # 95361											
		I												
2120 High Pc	oint Road • Forest F	Hill, Maryland 21050		BEAUFOR	F COUNTY, N	NORTH CA	ROLINA						5 of	11

STATION	ELEVATION
0+00	40.88
0+25	38.67
0+46	36.75
0+47	36.92
0+48	36.57
0+50	36.7
0+52	36.65
0+54	36.7
0+56	36.67
0+58	36.63
0+75	37.8
1+00	40.15

Monitoring XS 6 (Riffle) - REACH 2 STA 0+68 44 42 40 Elevation 38 36 34 32 -50 -40 -30 -20 -10 δ 10 20 30 40 50 60 70 **Distance From Stream Centerline** Scale: 1" = 20' STREAM TYPE C5/6 Vertical Exaggeration:5x

Note:


The cross section shows aggradation across the entire valley. Since aggradation was not noted during field investigation, we believe this cross section may need to be resurveyed.

LEGEND

AS-BUILT GRADE YEAR 1 MONITORING GRADE YEAR 2 MONITORING GRADE BANKFULL ELEVATION HOODPRONE ELEVATION

SUMMARY DATA (FT)	
BANKFULL ELEVATION:	37.54
BANKFULL CROSS SECTIONAL AREA:	5.28
BANKFULL WIDTH:	12.51
FLOOD PRONE AREA ELEVATION:	38.08
FLOOD PRONE WIDTH:	42.3
MAX DEPTH AT BANKFULL:	0.54
MEAN DEPTH AT BANKFULL:	0.42
W/D RATIO:	29.64
ENTRENCHMENT RATIO:	2.00
BANK HEIGHT RATIO:	1

SHEET:

6 of 11

STATION	ELEVATION					
0+00	38.31			Monitoring XS 7 (Pool) - REACH 1 STA 6+47	
0+25	37.14		42			
0+28	36.96					
0+42	36.64					
0+44	36.67		40			
0+45	36.24	<u> </u>				
0+46	36.14	Elevation	38			
0+48	35.73	tion				
0+50	35.70					
0+52	36.28		36			
0+56	36.22					
0+70	36.48		34 -70 -60 -50 -40 -	-30 -20 -10	0 10 20 30	40 50
0+97	36.97			Distance From Strea		10 50
1+00	37.06			Scale: 1" =		
				Vertical Exagge		
		YEAR 1 MONITORING GRADE	BANKFULL ELEVATION:	36.26		
		YEAR 2 MONITORING GRADE				
		BANKFULL ELEVATION	BANKFULL CROSS SECTIONAL AREA: BANKFULL WIDTH:	2.37 6.99	AND	
		FLOODPRONE ELEVATION	FLOOD PRONE AREA ELEVATION:	36.82		>\
			FLOOD PRONE AREA ELEVATION: FLOOD PRONE WIDTH:	49.4		A State
			MAX DEPTH AT BANKFULL:	0.56	Construction of the second	CARD CONTRACTOR
			MAX DEPTH AT BANKFULL:	0.34		The second states
Note: The pool is c	leepening as exp	pected.	W/D RATIO:	NA		a the de
			ENTRENCHMENT RATIO:	NA		S Color
			BANK HEIGHT RATIO:	0.99	BEACHING AND AND	Contraction of the
6	ecc	otone	HUDSON STREAM	RESIORATI	ON PROJECT	
	ecologic	alrestoration	YEAR 2	MONITORING XS 7		SHEET:
	- cccrogro		/			
C	oborogro		PRO	OJECT # 95361		
120 High Poi		Hill, Maryland 21050		OJECT # 95361 COUNTY, NORTH CAROLINA		7 of 1

	ELEVATION						-			• -							
0+00	38.41						Mon	itoring XS	58 (Riffle	e) - REA	CH 1 ST	A 4+43					
0+25	38.18	4	2								1					 	_
0+28	38.13													_		 	
0+42	38.08	4	<u>م ا</u>														
0+44	38.03	4															
0+45	37.89	Ше								_						 	_
0+46	37.66	3 Elevation	8 +									1		_		 	
0+48	37.70	on														 	_
0+49.5	37.49	3	6 —					_	_					_		 	
0+51.5	37.70															 	
0+53.9	37.33																
0+59	37.77	3	4 -70	-60	-50	-40	-30	-20	-10	0 :	10	20	30	40	50	 60	70
0+70	38.21							Distanc	e From S	Stream C	Centerlin	е					
1+97	38.44									1" = 20'							
1+00	38.52							Ve	rtical Exa	aggeratio	n:5x						
		YEAR 1 MONITORIN	Ig grade	SUMM	ARY DAT	A (FT)											
			IG GRADE	SUMM	ARY DAT	A (FT)											
		YEAR 2 MONITORIN				A (FT) VATION:			37.9								
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK	FULL ELE	VATION:	IONAL ARI	EA:	4.26	5							
		YEAR 2 MONITORIN	g grade Dn	BANK BANK	FULL ELE	VATION:		EA:	4.26 16.10	; D							
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK BANK FLOOI	FULL ELE FULL CRO FULL WI D PRONE	EVATION: DSS SECT DTH: AREA ELI		EA:	4.26 16.10 38.46	5 D 6							
	·	YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK BANK FLOOI FLOOI	FULL ELE FULL CRO FULL WI D PRONE D PRONE	VATION: DSS SECT DTH: AREA ELI WIDTH:	IONAL ARI	EA:	4.26 16.10 38.40 97.7	5 D 6				Average			
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK FLOOI FLOOI MAX I	FULL ELE FULL CRO FULL WI D PRONE D PRONE DEPTH A1	VATION: DSS SECT DTH: AREA ELI WIDTH: F BANKFU	IONAL ARI	EA:	4.26 16.10 38.46 97.7 0.57	5 D 6 ,				A vestion of the second	-HORY		
·	·	YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK BANK FLOOI FLOOI MAX I MEAN	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE DEPTH A I DEPTH A	VATION: DSS SECT DTH: AREA ELI WIDTH:	IONAL ARI	EA:	4.26 16.10 38.46 97.7 0.57 0.26	5 D 6 , ,							
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK BANK FLOOI FLOOI MAX I MEAN W/D	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE N DEPTH A RATIO:	VATION: DSS SECT DTH: AREA ELL WIDTH: F BANKFU	IONAL ARI	EA:	4.26 16.10 38.40 97.7 0.57 0.26 60.83	5 0 6 7 6 3							
·		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR	FULL ELE FULL CRC FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE A D PRONE D	VATION: DSS SECT DTH: AREA ELI WIDTH: F BANKFU AT BANKF	IONAL ARI	EA:	4.26 16.10 38.46 97.7 0.57 0.26 60.83 5.36	5 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE N DEPTH A RATIO:	VATION: DSS SECT DTH: AREA ELI WIDTH: F BANKFU AT BANKF	IONAL ARI	EA:	4.26 16.10 38.40 97.7 0.57 0.26 60.83	5 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
		YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR	FULL ELE FULL CRC FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE A D PRONE D	VATION: DSS SECT DTH: AREA ELI WIDTH: F BANKFU AT BANKF	IONAL ARI	EA:	4.26 16.10 38.46 97.7 0.57 0.26 60.83 5.36	5 0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
		YEAR 2 MONITORIN	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR BANK	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE N D PRONE	VATION: DSS SECT DTH: AREA ELL WIDTH: I BANKFU AT BANKF NT RATIO:	IONAL ARI		4.26 16.10 38.40 97.7 0.57 0.26 60.83 5.36 0.88	5 0 6 7 7 8 3 8							
	ecc	YEAR 2 MONITORIN	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR BANK	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE N D PRONE	VATION: DSS SECT DTH: AREA ELL WIDTH: I BANKFU AT BANKF NT RATIO:	IONAL ARI	MRE	4.26 16.10 38.40 97.7 0.57 0.26 60.81 5.36 0.88	b D D D D RAT			OJE	CT			
	ecologic	YEAR 2 MONITORIN BANKFULL ELEVATIO	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR BANK	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE N D PRONE	VATION: DSS SECT DTH: AREA ELL WIDTH: I BANKFU AT BANKF NT RATIO:	IONAL ARI		4.26 16.10 38.46 97.7 0.57 0.26 60.83 5.36 0.88 STO NITORIN	D D D D D D D R A T NG XS 8			OJE	CT		SHEET:	
	ecologic	YEAR 2 MONITORIN	g grade Dn	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR BANK	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE N D PRONE	VATION: DSS SECT DTH: AREA ELL WIDTH: I BANKFU AT BANKF NT RATIO:	IONAL ARI	M RE R 2 MON PROJEC	4.26 16.10 38.46 97.7 0.57 0.26 60.83 5.36 0.88 STO NITORIN T # 95.2	PRAT NG XS 8 361	3		CJE	CT		SHEET:	
2120 High Po	int Road • Forest H	YEAR 2 MONITORIN	G GRADE DN ATION	BANK BANK FLOOI FLOOI MAX I MEAN W/D ENTR BANK	FULL ELE FULL CRO FULL WI D PRONE D PRONE D PRONE D PRONE D PRONE N D PRONE	VATION: DSS SECT DTH: AREA ELI WIDTH: I BANKFU AT BANKF NT RATIO RATIO:	IONAL ARI	M RE R 2 MON PROJEC	4.26 16.10 38.46 97.7 0.57 0.26 60.83 5.36 0.88 STO NITORIN T # 95.2	B D D D D D R A T S S S S S S S S S S S S S	8			CT		SHEET: 8 OT	f 1

STATION	ELEVATION						Mo	hitorina)	(S 9 (Poo	Ι) - RFΔ(сн 1 ст.	∆ 2+73				
0+00	39.93							ittoring /				~2175				
0+25	39.92		44 T													
0+40	39.41															
0+46	39.21		42													
0+47	38.05															
0+48	38.96		leva 40													
0+50	38.83		Elevation							+					T	
0+52	38.24		□ <u></u>							K/						
0+54	38.76		38													
0+56	39.13															
0+58	39.36		36													
0+60	39.20		-70	-60	-50	-40	-30	-20	-10	-		20	30	40	50	6
0+66	39.32						D		From Stre		erline					
0+75	39.60								Scale: 1"							
1+00	39.92							vertic	al Exagge		x					
		YEAR 1 MONITORING GRADE	SUMMARY D	ATA (FT))					All and a state of the state of	LAN ING	-	A State	Ing"	I share	
		AS-BUILT GRADE											Standy and Park	hann		
			BANKFULL					39.00		the other paper	THEFT	A STATE OF THE STA		1. 19 pr		
		YEAR 2 MONITORING GRADE	BANKFULL	CROSS SI	ECTIONAL	AREA:		2.19		and the second	SAN AL					
		BANKFULL ELEVATION FLOODPRONE ELEVATION	BANKFULL	WIDTH:				7.30				Carl you	. Harris	and the	Complete -	
		FLOODPROME ELEVATION	FLOOD PRO	NE AREA	ELEVATIO	ON:		39.58			C. A.	Ashea			C. K. K	B.
			FLOOD PRO	NE WIDT	rH:			38.7			N	位式协议				No.
			MAX DEPTH	AT BAN	KFULL:			0.76		E State				1.4.9.4		
			MEAN DEPT	H AT BAI	NKFULL:			0.30		ALC BY AND				前来		
Note: Reach is fu	nctioning. Cross s	section likely displaying an error	W/D RATIO):				NA				Carl I		arie		
in surveying	g. Field investigat	ion did not reveal an object in	ENTRENCH	MENT RA	TIO:			NA		HAR AN	A Carton					
obstruction	causing scour in	the pool.	BANK HEIG	HT RATI	0:			1.01		- A	ST LAN				10	NAN AND
										ALL AND						
(%)		ntono	HUDS	SON	STR	EAM	RES	STOR	RATI(DN P	ROJ	ECT				
	ecologia	otone al restoration	_				2 MONI				_			SHE	гт·	
							OJECT									
							T COUNTY,									4
2120 High P	oint Road • Forest	Hill, Maryland 21050					,							9) of 1	

2120 High Point Road • Forest Hill, Maryland 21050 (410) 420 2600•Fax (410) 420 6983•www.ecotoneinc.com PROJECT NO: 1269

DATE:1/22/2018

DRAWN BY: AA

CHECKED BY: DIS

9 of 11

STATION	ELEVATION					Monitor	ing VC 10		REACH 1		54			
0+00	41.37					MOINTO	IIIQ X5 10	(Rine) -	REACH	51A 0+	54			
0+20	40.70	46	5 <u> </u>											
0+34	40.51													
0+42	40.29	44	ı —									_		
0+44	40.01													
0+46	39.97													
0+48	40.06	Elevation	2											
0+50	39.82	vatio												
0+52	40.01	0n 4() —									_		
0+54	40.31													
0+75	40.68	38	3											
1+00	41.19		,											
		36												
		AS-BUILT GRADE YEAR 1 MONITORING GRADE				<i>,</i>								
	LEGEN		ST	REAM TYPI		5/6								
		YEAR 1 MONITORING GRADE	SUMMA	RY DATA (I	FT)									
		YEAR 2 MONITORING GRADE		JLL ELEVA				40.24						
		BANKFULL ELEVATION		JLL CROSS	SECTION	NAL AREA:		2.58		Dentific .				
		FLOODPRONE ELEVATION	BANKF	ULL WIDTH	1:			11.19					and the second second	E vinne in a
			FLOOD	PRONE AR	EA ELEVA	ATION:		40.7		The Manager	This wante			
			FLOOD				_				A STALLARD	NGAR /		
				PRONE WI	DTH:			53.8		AN AN				B SALE A
				PRONE WI		.		53.8 0.42						AN STATE
			MAX DE		ANKFULL									
			MAX DE	EPTH AT BA	ANKFULL			0.42						
			MAX DE MEAN D W/D R	EPTH AT BA	ANKFULL: BANKFUL			0.42						
			MAX DE MEAN D W/D RA ENTREI	EPTH AT BA DEPTH AT I ATIO:	ANKFULL: BANKFUL RATIO:			0.42 0.23 48.60						
			MAX DE MEAN D W/D RA ENTREI	EPTH AT BA DEPTH AT I ATIO: NCHMENT	ANKFULL: BANKFUL RATIO:			0.42 0.23 48.60 5.21						
<u></u>		tono	MAX DE MEAN E W/D RJ ENTREI BANK F	EPTH AT B DEPTH AT I ATIO: NCHMENT IEIGHT RA	ANKFULL: BANKFUL RATIO: TIO:	L:	4 RE	0.42 0.23 48.60 5.21 1.12		DN P	ROJE	CT		
<u> </u>	ecologica	tone	MAX DE MEAN E W/D RJ ENTREI BANK F	EPTH AT B DEPTH AT I ATIO: NCHMENT IEIGHT RA	ANKFULL: BANKFUL RATIO: TIO:	REAN		0.42 0.23 48.60 5.21 1.12 STOF		DN P	ROJE	CT	CHE	FT.
Æ	ecologica	tone al restoration	MAX DE MEAN E W/D RJ ENTREI BANK F	EPTH AT B DEPTH AT I ATIO: NCHMENT IEIGHT RA	ANKFULL: BANKFUL RATIO: TIO:	L: REAN YEAR		0.42 0.23 48.60 5.21 1.12 STOF	i XS 10	DN P	ROJE	CT	SHE	ET:
K		tone al restoration	MAX DE MEAN E W/D RJ ENTREI BANK F	EPTH AT B DEPTH AT I ATIO: NCHMENT IEIGHT RA	ANKFULL: BANKFUL RATIO: TIO:	L: REAN YEAR P	2 Moni	0.42 0.23 48.60 5.21 1.12 STOF TORING # 9536	XS 10	DN P	ROJE	CT		ET: 0 of 1

STATION	ELEVATION
0+00	35.58
0+08	33.62
0+10.5	33.21
0+14	32.71
0+16	32.71
0+18	32.85
0+20	32.75
0+22	32.77
0+24	32.83
0+26	32.75
0+28	32.72
0+30	33.04
0+32	32.65
0+34	32.63
0+36	32.54
0+38	32.56
0+40	33.06
0+42	33.24
0+44	33.38
0+46	33.50
0+60	39.45
0+75	35.66

Mon	itoring XS 11 REACH 1	STA 8+14 & Reach 4 (Station 4+28)
40			
38			
Elevation 36			
ivati			
9 34			
	har		
32			
30	-30 -20 -10	0 10 20	30 40
50 10		om Stream Centerline	50 10
		ale: 1" = 20'	
	Vertical	Exaggeration:5x	
STREAM TYPE C5/6			At the state
SUMMARY DATA (FT)		Construction and the	
BANKFULL ELEVATION:	33.49		
BANKFULL CROSS SECTIONAL AREA:	22.54		WALL
BANKFULL WIDTH:	36.94		KAR
FLOOD PRONE AREA ELEVATION:	34.44		STAN ALSO
FLOOD PRONE WIDTH:	55.1		
MAX DEPTH AT BANKFULL:	0.95		
MEAN DEPTH AT BANKFULL:	0.61		
W/D RATIO:	NA		

NA

1

DRAWN BY: AA

LEGEND
AS-BUILT GRADE
YEAR 1 MONITORING GRADE
YEAR 2 MONITORING GRADE
BANKFULL ELEVATION
FLOODPRONE ELEVATION

ENTRENCHMENT RATIO:

BANK HEIGHT RATIO:

2120 High Point Road • Forest Hill, Maryland 21050

410) 420 2600+Fax (410) 420 6983+www.ecotoneinc.com PROJECT NO: 1269

DATE:1/22/2018

CHEC

CHECKED BY: DIS

50

11 of 11

Table 8: Monitoring Year 2 - Bank Pin Data

Pins arrays consist of three pins located in the middle of stream banks along meander bends

Bank Pin Array #1 @ XS	5 - Reach 2 – Station 2+69											
Pin Exposure												
Upstream Pin	Could not find- minor aggradation											
Middle Pin	Could not find- minor aggradation											
Downstream Pin	Could not find- minor aggradation											

Bank Pin Array #2 @ XS	4 - Reach 2 – Station 3+95											
Pin Exposure												
Upstream Pin	Could not find- minor aggradation											
Middle Pin	Could not find- minor aggradation											
Downstream Pin	Could not find- minor aggradation											

Bank Pin Array #1 @ XS 9 - Reach 1 – Station 2+73													
Pin Exposure													
Upstream Pin	Could not find- minor aggradation												
Middle Pin	Could not find- minor aggradation												
Downstream Pin	Could not find- minor aggradation												

							Table	10a. E	Baselir	ne Stre	eam Da	ata Su	mmar	v	Table 10a. Baseline Stream Data Summary Project Name/Number (Hudson/ DMS:95361) - Segment/Reach: Reach 1													
				Pr	oject N										: Read	ch 1												
Parameter	Gauge ²	Reg	ional C		Ĺ		Existin				1		ence Re					Desigr	1		Мо	nitorin	g Base	ine				
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n			
Bankfull Width (ft))				3.36		3.83	6.02			19.74		21.97	24.2				9.02		11.5			16.2		2			
Floodprone Width (ft))				6.47		6.91	10.5			44		64.5	85			18.06	26.74	34.89	57			83.33		2			
Bankfull Mean Depth (ft))				0.45		0.52	0.6			0.7		0.75	0.82				0.42		0.22			0.26		2			
¹ Bankfull Max Depth (ft)				0.56		0.87	1.07			0.85		1.02	1.18			0.44	0.53	0.61	0.4			0.51		2			
Bankfull Cross Sectional Area (ft ²)				1.99		2	2.68			16.09		16.49	16.89				3.8		2.58			4.26		2			
Width/Depth Ratio	þ				5.64		7.37	13.52			24.22		29.27	34.67				21.4		52.27			62.31		2			
Entrenchment Ratio	þ				1.74		1.8	1.93			2		2.94	3.87			2	2.94	3.87	4.96			5.14		2			
¹ Bank Height Ratio)																			1			1		2			
Profile																				_								
Riffle Length (ft))					N/A*					12		46.5	81			4.93	19.09	33.25									
Riffle Slope (ft/ft)					N/A*					0.004		0.011	0.017			0.006	0.016	0.025									
Pool Length (ft))					N/A*					21		30.5	40			4.72	8.41	14.98									
Pool Max depth (ft))					N/A*					1.4		1.65	1.9			0.72	0.93	1.15									
Pool Spacing (ft))					N/A*					40		59	78			16.42	26.95	35.63									
Pattern																												
Channel Beltwidth (ft)					N/A*					27		49	76			11.08	20.11	31.19									
Radius of Curvature (ft))					N/A*					90		92	95			36.94	37.76	38.99									
Rc:Bankfull width (ft/ft)					N/A*											4.10	4.19	4.32									
Meander Wavelength (ft))					N/A*					12.43		15.07	18.25			112.1	135.9	164.6									
Meander Width Ratio						N/A*											1.23	2.23	3.46									
Transport parameters																												
Reach Shear Stress (competency) lb/f	2						0.3	26										0.18										
Max part size (mm) mobilized at bankful	I																											
Stream Power (transport capacity) W/m2	2						0.	56										0.14										
Additional Reach Parameters																												
Rosgen Classification	ı						G5	-G6					C5	-C6				C5-C6				C	5/6					
Bankfull Velocity (fps))																											
Bankfull Discharge (cfs))						5	.6																				
Valley length (ft))						84	40					26	64														
Channel Thalweg length (ft)						84	46					26	64				833				8	50					
Sinuosity (ft)						1.0	01					1	1				1.04				1.	04					
Water Surface Slope (Channel) (ft/ft)						0.0	07					0.0	04				0.007										
BF slope (ft/ft)																				0.0	006						
³ Bankfull Floodplain Area (acres)	³ Bankfull Floodplain Area (acres)																											
⁴ % of Reach with Eroding Banks	6																											
Channel Stability or Habitat Metric																												
Biological or Othe	r										Γ																	

Table 10a. Baseline Stream Data Summary Project Name/Number (Hudson/ DMS:95361) - Segment/Reach: Reach 2																									
				Pr	oject N	lame/l	lumbe	er (Huc	lson/ [DMS:9	95361)	- Seg	ment/F	Reach	: Read	ch 2									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition	_		Refere	nce Re	each(es	s) Data	_		Desigr	<u>۱</u>		Мо	nitoring	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)					5.97		6.87	7.2			19.74		21.97	24.2				14.83				11.78			1
Floodprone Width (ft)					10.03		12.03	13.47			44		64.5	85			29.71	43.55	57.39			28.2			1
Bankfull Mean Depth (ft)					0.91		0.92	0.94			0.7		0.75	0.82				0.67				0.45			1
¹ Bankfull Max Depth (ft)					1.38		1.42	1.54			0.85		1.02	1.18			0.7	0.84	0.98			0.86			1
Bankfull Cross Sectional Area (ft ²)					5.59		6.32	6.58			16.09		16.49	16.89				10				5.28			1
Width/Depth Ratio					6.38		7.47	7.88			24.22		29.27	34.67				22				26.18			1
Entrenchment Ratio					1.67		1.68	1.96			2		2.94	3.87				2.94				2.39			1
¹ Bank Height Ratio																						1			1
Profile			-	-														-				-			
Riffle Length (ft)						N/A*					12		46.5	81			8.1	31.39	54.68						
Riffle Slope (ft/ft)						N/A*					0.004		0.011	0.017			0.003	0.008	0.012						
Pool Length (ft)						N/A*					21		30.5	40			14.18	20.59	27						
Pool Max depth (ft)						N/A*					1.4		1.65	1.9			1.16	1.48	1.84						
Pool Spacing (ft)						N/A*					40		59	78			27	44.33	58.61						
Pattern																									
Channel Beltwidth (ft)						N/A*					27		49	76			18.23	33.08	51.31						
Radius of Curvature (ft)						N/A*					90		92	95			60.76	62.11	64.14						
Rc:Bankfull width (ft/ft)						N/A*											4.10	4.19	4.32						
Meander Wavelength (ft)						N/A*					12.43		15.07	18.25			184.3	223.5	270.7						
Meander Width Ratio						N/A*											1.23	2.23	3.46						
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							0.4	42										0.11							
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²							1.:	25										0.18							
Additional Reach Parameters																									
Rosgen Classification							G5	-G6			T		C5-	-C6				C5-C6				C	5/6		
Bankfull Velocity (fps)																									
Bankfull Discharge (cfs)			1	1			17	.2																	
Valley length (ft)					I		48	36					26	64											
Channel Thalweg length (ft)								16					26					532				54	11		
Sinuosity (ft)							1.0						1					1.05				1.(
Water Surface Slope (Channel) (ft/ft)							0.0						0.0	04				0.003							
BF slope (ft/ft)																						0.0	035		
³ Bankfull Floodplain Area (acres)										1															
⁴ % of Reach with Eroding Banks					Ī						1														
Channel Stability or Habitat Metric																									
Biological or Other																									

						-	Table [·]	10a. E	Baselir	ne Stre	eam D	ata Su	mmar	/											
				Pr	oject N						95361)				: Read	ch 3									
Parameter	Gauge ²	Reg	ional C	urve		Pre-l	Existing	g Cond	ition			Refere	ence Re	each(es	s) Data			Desigr	1		Мо	nitoring	g Base	line	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft))				3.55		4.03	5.05			19.74		21.97	24.2				10				12.5			1
Floodprone Width (ft))				5.97		6.44	9.13			44		64.5	85			20.03	29.36	38.69			32.9			1
Bankfull Mean Depth (ft))				0.55		0.79	0.84			0.7		0.75	0.82				0.5				0.57			1
¹ Bankfull Max Depth (ft))				0.88		1.15	1.44			0.85		1.02	1.18			0.52	0.63	0.72			0.85			1
Bankfull Cross Sectional Area (ft ²))				1.94		3.17	4.26			16.09		16.49	16.89				5				7.07			1
Width/Depth Ratio	þ				5.12		5.99	6.5			24.22		29.27	34.67				20				21.95			1
Entrenchment Ratio	þ				1.6		1.68	1.8			2		2.94	3.87			2	2.94	3.87			2.63			1
¹ Bank Height Ratio	b																					1			1
Profile					-															-					
Riffle Length (ft))					N/A*					12		46.5	81			5.46	21.17	36.87						
Riffle Slope (ft/ft))					N/A*					0.004		0.011	0.017			0.005	0.014	0.021						
Pool Length (ft))					N/A*					21		30.5	40			9.56	13.88	18.21						
Pool Max depth (ft))					N/A*					1.4		1.65	1.9			0.86	1.1	1.36						
Pool Spacing (ft))					N/A*					40		59	78			18.21	29.89	39.51						
Pattern																									
Channel Beltwidth (ft))					N/A*					27		49	76			12.29	22.3	24.59						
Radius of Curvature (ft))					N/A*					90		92	95			40.96	41.88	43.24						
Rc:Bankfull width (ft/ft))					N/A*											4.10	4.19	4.32						
Meander Wavelength (ft))					N/A*					12.43		15.07	18.25			124.3	150.7	182.5						
Meander Width Ratio	D .					N/A*											1.23	2.23	3.46						
Transport parameters																				_					
Reach Shear Stress (competency) lb/fé	2						0.3	37										0.14							
Max part size (mm) mobilized at bankful																									
Stream Power (transport capacity) W/m ²	2						1.(02										0.18							
Additional Reach Parameters																									
Rosgen Classification	l						G5-	-G6					C5	-C6				C5-C6				C	5/6		
Bankfull Velocity (fps))																								
Bankfull Discharge (cfs))						ε	3																	
Valley length (ft))						44	12					26	64											
Channel Thalweg length (ft))						46	60					26	64				445				44	46		
Sinuosity (ft))						1.(04					1					1.01				1.	08		
Water Surface Slope (Channel) (ft/ft))						0.0	07					0.0	04				0.007							
BF slope (ft/ft))																					0.0	005		
³ Bankfull Floodplain Area (acres)	³ Bankfull Floodplain Area (acres)																								
⁴ % of Reach with Eroding Banks	6																								
Channel Stability or Habitat Metric																									
Biological or Other	r																								

											eam D														
				Pr	oject N	Vame/I	Numbe	er (Huc	dson/ [DMS:9	5361)	- Seg	ment/l	Reach	: Read	ch 4									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	lition			Refere	ence Re	ach(es) Data			Design	1		Мо	nitoring	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD^5	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)					7.34		7.48	8.84			19.74		21.97	24.2				21.82				9.9			1
Floodprone Width (ft)					12.21		13.83	16.28			44		64.5	85			43.69	64.05	84.41			31.36			1
Bankfull Mean Depth (ft)					0.97		1	1.05			0.7		0.75	0.82				0.78				0.32			1
¹ Bankfull Max Depth (ft)					1.47		1.51	1.82			0.85		1.02	1.18			0.81	0.98	1.13			0.74			1
Bankfull Cross Sectional Area (ft ²)					7.49		7.69	8.58			16.09		16.49	16.89				17				3.17			1
Width/Depth Ratio					7.01		7.47	9.11			24.22		29.27	34.67				28				30.9			1
Entrenchment Ratio					1.63		1.84	1.88			2		2.94	3.87			2	2.94	3.87			3.17			1
¹ Bank Height Ratio																						1			1
Profile					-						_														
Riffle Length (ft)							N/A*				12		46.5	81			11.92	46.18	80.44						
Riffle Slope (ft/ft)							N/A*				0.004		0.011	0.017			0.006	0.016	0.025						
Pool Length (ft)							N/A*				21		30.5	40			20.85	30.29	39.72						
Pool Max depth (ft)							N/A*				1.4		1.65	1.9			1.34	1.71	2.12						
Pool Spacing (ft)							N/A*				40		59	78			39.72	65.21	86.21						
Pattern																									
Channel Beltwidth (ft)							N/A*				27		49	76			26.8	48.66	75.47						
Radius of Curvature (ft)							N/A*				90		92	95			89.37	91.36	94.34						
Rc:Bankfull width (ft/ft)							N/A*										4.096	4.188	4.324						
Meander Wavelength (ft)						1	N/A*				12.43		15.07	18.25			271.1	328.7	398.2						
Meander Width Ratio							N/A*										1.23	2.23	3.46						
Transport parameters																									
Reach Shear Stress (competency) lb/f ²							0.	48										0.16							
Max part size (mm) mobilized at bankfull																									
Stream Power (transport capacity) W/m ²							1.	01										0.22							
Additional Reach Parameters																									
Rosgen Classification					I		G5	-G6					C5	C6				C5-C6				C	5/6		
Bankfull Velocity (fps)																									
Bankfull Discharge (cfs)							26	6.2																	
Valley length (ft)			-	-				34					26	64											
Channel Thalweg length (ft)								03					26					437				44	17		
Sinuosity (ft)								16					1					1.01				1.0			
Water Surface Slope (Channel) (ft/ft)							0.0						0.0	04				0.003							
BF slope (ft/ft)																						0.0	035		
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks					Ī																				
Channel Stability or Habitat Metric					Ī																				
Biological or Other																									

			٦	Fable	11a.			-					•				• •						Cros	s Seo	ction	s)									
	1	Cross	Sectio	on 1 (Pe	ool - R		-				<u>`</u>		DMS Reach 3		<u> </u>	<u> </u>	nent/ Sectio				<u>,</u>	2200	Cross	Sectio	on 4 (P	ool - F	each 4	1)		Cross	Sectio	n 5 (F	Pool - F	leach (2)
Based on fixed baseline cross-sectional area ¹	Base	1	MY2	r Ì	MY4	MY5	í –	Base	MY1	r -	MY3	MY4	MY5	MY+	Base	MY1	MY2	T È	MY4	1	MY+	Base	MY1		МҮЗ	T	1	MY+		MY1	MY2	T Ì	MY4	r	MY+
Record elevation (datum) used	4.00	4.00	4.00					7.07	7.07	7.07					3.17	3.17	3.17					3.19	3.19	3.19					4.00	4.00	4.00				
Bankful Elevation (ft)	37.57	_							36.36	36.56							34.58						33.69						35.46						
Bankfull Width (ft)	6.30		12.37					12.50	_	16.33					9.90		10.59						11.95						7.55		11.04			1	-
Floodprone Width (ft)	21.50	29.60	27.40					32.90	36.80	42.80					31.36	47.80	29.01					23.40	36.50	40.40					32.50	24.30	33.50			1	
Bankfull Mean Depth (ft)	0.64	0.29	0.32	1	1			0.57	0.51	0.43					0.32	0.54	0.30			1		0.33	0.27	0.27					0.53	0.37	0.36			1	1
Bankfull Max Depth (ft)	1.24	0.67	0.79					0.85	0.92	1.04					0.74	1.46	0.62					0.60	0.77	0.85					0.90	0.82	0.79			1	
Bankfull Cross Sectional Area (ft ²)	4.00	4.00	4.00					7.07	7.07	7.07					3.17	3.17	3.17					3.19	3.19	3.19					4.00	4.00	4.00			1	1
Bankfull Width/Depth Ratio	N/A	N/A	N/A	1	1			21.95	27.04	37.73					30.90	10.99	35.39			1		N/A	N/A	N/A					N/A	N/A	N/A			1	
Bankfull Entrenchment Ratio	N/A	N/A	N/A	1	1	1		2.63	2.66	2.25					3.17		5.47	Ì		1	Ì	N/A	N/A	N/A	Ì	1			N/A	N/A	N/A	1	1	f	
Bankfull Bank Height Ratio	1.00	1.00	1.00	1	1	i i		1.00	1.00	1.00			İ		1.00		1.00	1	İ –	1	Ì	1.00	1.00	0.99	Ì	l I	İ	İ	1.00	1.00	1.00	1		ſ	
Cross Sectional Area between end pins (ft ²)		1	Ĩ	Ī	Ī	Ī			Î –	1			1	1	Ĩ	1	1	Ī	Î	Ī	Ī	Ĩ	1		Ī	1	Î	Î			1	Ī		1	
d50 (mm)															1	1						1												1	
	(Cross	Sectio	n 6 (Ri	iffle - F	Reach 2	2)	ľ	Cross	Sectio	n 7 (P	ool - R	each 1	I)	(Cross	Sectio	n 8 (Ri	ffle - F	Reach 1	1)		Cross	Sectio	on 9 (P	ool - R	each '	1)	С	ross S	Section	n 10 (I	Riffle -	Reach	1)
Based on fixed baseline cross-sectional area ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	5.28	-						2.37	2.37	2.37					4.26	4 26	4.26					2.19							2.58	2.58	2.58			-	$ \rightarrow$
Bankful Elevation (ft)	36.53	37.00	37.54					36.56		36.26					37.91		37.90						39.00	39.00					40.26		40.24				
Bankfull Width (ft)	11.78	_	12.51					7.00	6.66	6.99					16.20		16.10					8.00	8.53	7.30					11.50		11.19				-
Floodprone Width (ft)	28.20								71.40	49.40				-	83.33		97.70					37.37	49.60				-	-	57.00		53.80		1		
Bankfull Mean Depth (ft)	0.45	_	0.42					0.33	0.36	0.34				-	0.26	0.23	_					0.27	0.26	0.30			-	-	0.22	0.24			1		
Bankfull Max Depth (ft)	0.45	0.44	0.54					0.65	0.67	0.56					0.51		0.57					0.59	0.68	0.76					0.40	0.43	0.42		-		
Bankfull Cross Sectional Area (ft ²)	5.28	5.28	5.28					2.37	2.37	2.37					4.26	4.26						2.19	2.19	2.19					2.58	2.58	2.58				-
Bankfull Width/Depth Ratio		_						N/A	N/A	N/A					62.31		60.83					N/A	N/A	N/A					52.27	45.21					
Bankfull Entrenchment Ratio		2.00	2.00					N/A	N/A	N/A					5.14		5.36					N/A	N/A	N/A					4.96	5.40					
Bankfull Bank Height Ratio								1.00		0.99					1.00		0.88					1.00		1.01			1	1	1.00	1.19	1.12				
Cross Sectional Area between end pins (ft ²)		1.00	1.00							0.00					1.00	0.70	0.00						1.00						1.00						
d50 (mm)									-	-			-		1	1						1					-	-						-	
000 (mm)	Cr	oss Se	ction 1	1 (Conf	luence	- Reac	h 1)																												
Based on fixed baseline cross-sectional area ¹	Base	1	MY2	1	MY4	MY5	ŕ																												
Record elevation (datum) used	22.54	22.54	22.54	1	1																														
Bankful Elevation (ft)	33.42	_	-	1	1																														
Bankfull Width (ft)	32.00																																		
Floodprone Width (ft)	50.34			1	1																														
Bankfull Mean Depth (ft)	0.70	0.70	0.61	1	1																														
Bankfull Max Depth (ft)	0.91	1.52	0.95																																
Bankfull Cross Sectional Area (ft2)	22.54	22.54	22.54	1	1	1																													
Bankfull Width/Depth Ratio		N/A	N/A	1	1																														
Bankfull Entrenchment Ratio		N/A	N/A																																
Bankfull Bank Height Batio		-	1.00	1	1																														
Cross Sectional Area between end pins (ft2)				1	1	1																													
d50 (mm)		1	1	1	1																														
ueo (iiiii)		-																																	

1 = Widths and depths for annual measurements will be based on the baseline cross-section datum regardless of dimensional/depositional development. Input thecross section used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given pages report submission a loontee in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide continnation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

														it Tab Name/																						
Parameter			Base	line					M	Y-1		110		vanne/		Y-2	10030		10.33	501)		/- 3	meac				M	Y - 4					MY	- 5		
Dimension and Substrate - Riffle only	Min		Med		SD^4	n	Min	I		Max	SD^4	n	Min	Mean			SD^4	n	Min	T		Max	0.004	n	Min		Med		SD ⁴	n	Ma	Mean	Med		SD ⁴	n
Bankfull Width (ft)	11.50		wed	16.20	50		11.46	Mean	Med	20.00	50	n 2			ivied	16.10		2	IVIIN	Mean	wed	wax	50	n	win	Mean	ivied	wax	50	n	WIIN	Mean	ivied	wax	50	n
	57.00			83.30			58.28			86.26		2	53.80			97.70		2																	+	
Bankfull Mean Depth (ft)	0.22			0.26			0.24			0.28		2	0.23			0.26		2																		
¹ Bankfull Max Depth (ft)	0.22			0.20			0.49			0.20		2				0.20		2																	<u> </u>	
Bankfull Cross Sectional Area (ft ²)	2.58			4.26			3.25			4.77		2	2.58			4.26		2																		
Width/Depth Ratio				62.31			40.49			83.95		2	48.60			60.83		2																	<u> </u>	
Entrenchment Ratio				5.14		2	4.31			5.08		2	5.21			5.36		2																		
¹ Bank Height Ratio				1.00			1.00			1.00		2	1.12			0.88		2																		
Profile	1.00			1.00		14	1.00			1.00		-	1.12			0.00		-															_			
Riffle Length (ft)	r –	<u> </u>	r	<u> </u>	r –	T		r –	r –	1	<u> </u>	r –						-							-	-	-						-	_		_
Riffle Slope (ft/ft)																																	_			
Pool Length (ft)						-																														
Pool Max depth (ft)																																	_			
Pool Spacing (ft)						-																														
Pattern													1						1																	
Channel Beltwidth (ft)	1			1	1	T		1	1	1		1																							<u> </u>	
Radius of Curvature (ft)						-				-																										
Rc:Bankfull width (ft/ft)						-										Pattern	data wi	II not ty	pically b	e collec	ted unle	ss visua	l data, c	limensio	nal data	or prof	ile data	indicate	-							
Meander Wavelength (ft)						1														sig	mincant	shins in	om base	ine												
Meander Wavelength (ii)																	1		1			1	1					1	1				_			
													1						1													1				
Additional Reach Parameters																																				
Rosgen Classification			C 5/	/6					С	5/6		-			С	5/6																				_
Channel Thalweg length (ft)			850							50						50																				
Sinuosity (ft)			1.0						-	04			İ.			04			1																	
Water Surface Slope (Channel) (ft/ft)										• ·			İ.						1																	
BF slope (ft/ft)			0.00)6					0.	006					0.0	006																				
2 = Bankfull for XS 6 recalculated																																				
³ Ri% / Ru% / P% / G% / S%								I	1					1		I	I					I	I					I	I			1				
³ SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks																																				
Channel Stability or Habitat Metric																																				
Biological or Other																																				
Shaded cells indicate that these will typically not be	e filled in																		-																	

Shaded cells indicate that these will typically not be filled in. 1 - The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Sill/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of valueneeded only if the n exceede 3

	1																						ata Si													
Parameter			Base	مانهم						IY-1		Pro	ject r	vame		Der (F 1Y-2	10050		NS:95	036T)		19- 3	/Reac	n: Re	ach 2			Y- 4			1			Y- 5		
Falameter																																				
Dimension and Substrate - Riffle only	Min	Mean		Max	SD^4	n	Min	Mean	Med		SD	'n	Min	Mea		i Max	SD ⁴	n		Mea	n Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mear	Med	Max	SD^4	n
Bankfull Width (ft)			11.78			1			12.5			1			12.5			1																		
Floodprone Width (ft)			28.2			1			25			1			42.3			1																		
Bankfull Mean Depth (ft)			0.45			1			0.11			1			0.42			1																		
¹ Bankfull Max Depth (ft)			0.86			1			0.21			1			0.54			1																		
Bankfull Cross Sectional Area (ft ²)			5.28			1			1.39			1			5.28			1																		
Width/Depth Ratio			26.2			1			112.3	3		1			29.64	4		1																		
Entrenchment Ratio			2.39			1			2			1			2			1																		
¹ Bank Height Ratio			1			1			1			1			1			1																		
Profile																																				
Riffle Length (ft)																																				
Riffle Slope (ft/ft)																																				
Pool Length (ft)																																				
Pool Max depth (ft)																																				
Pool Spacing (ft)																																				
Pattern	-								71																											
Channel Beltwidth (ft)																																				
Radius of Curvature (ft)																				h II .			.1.1.1.				e									
Rc:Bankfull width (ft/ft)																Patter	m data v	viii not t	ypically				al data, rom base		onal dat	a or proi	nie data	Indicat	e							
Meander Wavelength (ft)																	_			_	J				_		_	_								
Meander Width Ratio																																	1			
Additional Reach Parameters	-						-																													
Rosgen Classification			Ct	5/5					С	5/5					C	5/5																				_
Channel Thalweg length (ft)			54							541			Ĩ			541			1						Ĩ						1					
Sinuosity (ft)			1.0	05					1	.05			Î		1	1.05			1						I						Ĩ					
Water Surface Slope (Channel) (ft/ft)																																				
BF slope (ft/ft)			0.0	035					0.	0035			Î		0.	0035			1						I						T					
2 = Bankfull for XS 6 recalculated																																				
³ Ri% / Ru% / P% / G% / S%	,																																1			
³ SC% / Sa% / G% / C% / B% / Be%				_			_		_						1				1			1			I						T					
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks													Î						1	-					I						T					
Channel Stability or Habitat Metric													Ī						1						Ī						T					
Biological or Other	Ī												1						1						Ī						Ĩ					
Shaded cells indicate that these will typically not be	e filled ir	1.											-												-											-

Shaded cells indicate that these will typically not be filled in. 1 - The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Riffle, Run, Pool, Glide, Step; Sil/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value-reeded only if the n exceeds 3

															ble 11b. e/Numbe																					Γ
Parameter			Bas	eline			I		I	NY-1				Titalin	MY		5011/	Jino		i) U		(- 3		neuo			M	Y- 4					M	- 5		_
Dimension and Substrate - Riffle only	Min	Mean	Med	Мах	SD ⁴	n	Min	Mean	Me	d Max	SD ⁴	n	Min	Mear	Med	Мах	SD ⁴	n	Min	Mean	Med	Мах	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)			12.50			1			14.4			1	1		16.33			1																		
Floodprone Width (ft)			32.90			1			36.6	8		1	1		42.80			1																		
Bankfull Mean Depth (ft)			0.57	1		1		1	0.4	3	1	1	1		0.43			1		1						1	1	1	1							_
¹ Bankfull Max Depth (ft)			0.85			1			0.9	6		1			1.04			1																		
Bankfull Cross Sectional Area (ft ²)			7.07			1			16.2	4		1			7.07			1																		
Width/Depth Ratio			21.95			1			69.3	4		1			37.73			1																		
Entrenchment Ratio			2.63			1			2.5	3		1			2.25			1																		
¹ Bank Height Ratio			1.00			1			1.0)		1			1.00			1																		
Profile		-				-																														
Riffle Length (ft)							Ĭ	1							1														1							
Riffle Slope (ft/ft)															1																					
Pool Length (ft)															1																					
Pool Max depth (ft)															1																					
Pool Spacing (ft)															1																					
Pattern																																				
Channel Beltwidth (ft)				I				I					1																							_
Radius of Curvature (ft)																												P								
Rc:Bankfull width (ft/ft)															· · ·	Pattern d	ata wili n	ot typic	ally be c	signifi	i uniess icant shi	visuai da fts from	tta, dim baselin	ensiona e	i data o	r protile	data inc	licate								
Meander Wavelength (ft)																-	-											-								
Meander Width Ratio																																				
Additional Reach Parameters																																				
Rosgen Classification			С	5/6						C 5/6					C 5	/6																				
Channel Thalweg length (ft)		_	4			_		_		446	_	_		_	44						_	_		_		_	_	_	_			_		_	_	
Sinuosity (ft)			1.	.08						1.08					1.0	8																				
Water Surface Slope (Channel) (ft/ft)																																				
BF slope (ft/ft)			0.0	005					(0.005					0.00)5																				
2 = Bankfull for XS 6 recalculated												_				-														-						
³ Ri% / Ru% / P% / G% / S%															I																					
³ SC% / Sa% / G% / C% / B% / Be%															I																					
³ d16 / d35 / d50 / d84 / d95 /														1	I																					
² % of Reach with Eroding Banks							I						1						I																	
Channel Stability or Habitat Metric							I						1						I																	
Biological or Other Shaded cells indicate that these will typically not be	L						I																													

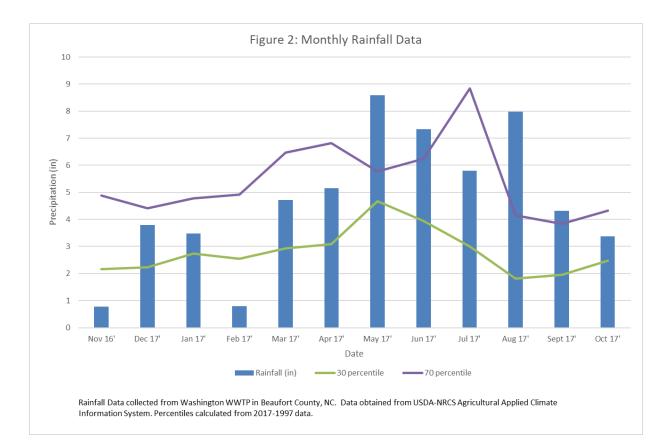
Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Rittle, Run, Pool, Gilde, Step; SilVClay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

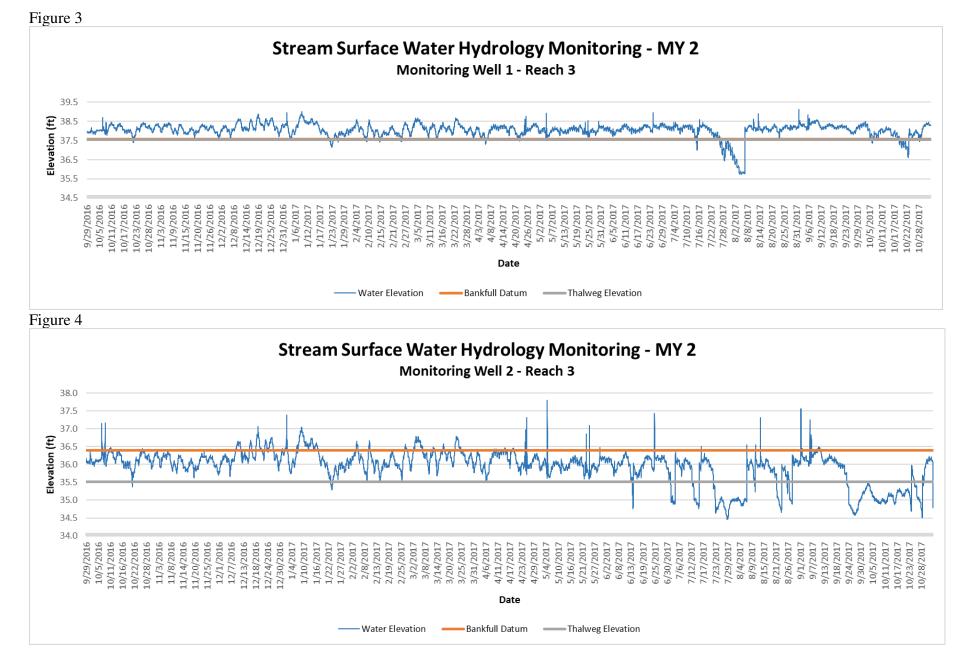
																						ch Dat nent/R														
Parameter			Bas	eline			I		M	Y-1		1 IOJ				Y-2	10001	/ 0111		.01)	<u> </u>	Y- 3	cuon				M	Y- 4					M	Y- 5		-
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD^4	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD^4	n
Bankfull Width (ft)			9.90	1		1			8.27			1			10.59	1		1		1	1								1		1		1	1		
Floodprone Width (ft)			31.36			1			57.96			1			29.01			1																		
Bankfull Mean Depth (ft)			0.32			1			0.52			1			0.30			1																		
¹ Bankfull Max Depth (ft)			0.74			1			1.62			1			0.62			1																		
Bankfull Cross Sectional Area (ft ²)			3.17			1			4.31			1			3.17			1																		
Width/Depth Ratio			30.90			1			15.86			1			35.39			1																		
Entrenchment Ratio			3.17			1			7.01			1			5.47			1																		
¹ Bank Height Ratio			1.00			1			1.00			1			1.00			1																		
Profile																																				
Riffle Length (ft)	I		1	1	I			1	1	I				1	1	1	1		1	1	1							1	1		1		1	1		
Riffle Slope (ft/ft)																																				1
Pool Length (ft)																																				
Pool Max depth (ft)				1		1									1	1				1	1								1		1		1	1		
Pool Spacing (ft)																																				1
Pattern																																				
Channel Beltwidth (ft)		1		I	1	I	I	I	I	1																										
Radius of Curvature (ft)																																				
Rc:Bankfull width (ft/ft)																Patterr	1 data w	II not ty	pically b	e collec sio	ted unle inificant	ess visual shifts fro	data, d m base	imensio ine	nal data	or prof	ile data	indicate								
Meander Wavelength (ft)																				- 0				-												
Meander Width Ratio				1		1									1	1				1	1										1		1	1		
																											-	-								
Additional Reach Parameters																																				
Rosgen Classification			С	5/6					С	5/6					С	5/6																				
Channel Thalweg length (ft)			4	47					4	47					4	47															1					
Sinuosity (ft)			1.	01					1.	01					1.	.01																				
Water Surface Slope (Channel) (ft/ft)																															1					
BF slope (ft/ft)			0.0	035					0.0	035					0.0	035															1					
2 = Bankfull for XS 6 recalculated																																				
³ Ri% / Ru% / P% / G% / S%												_						_																		
³ SC% / Sa% / G% / C% / B% / Be%																						1									1					
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks																																				
Channel Stability or Habitat Metric																															1					
Biological or Other																															1					
Shaded cells indicate that these will typically not be																																				-

Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section measurements and the longitudinal profile. 2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table 3 = Rittle, Run, Pool, Gilde, Step; Sith/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave 4. = Of value/needed only if the n exceeds 3

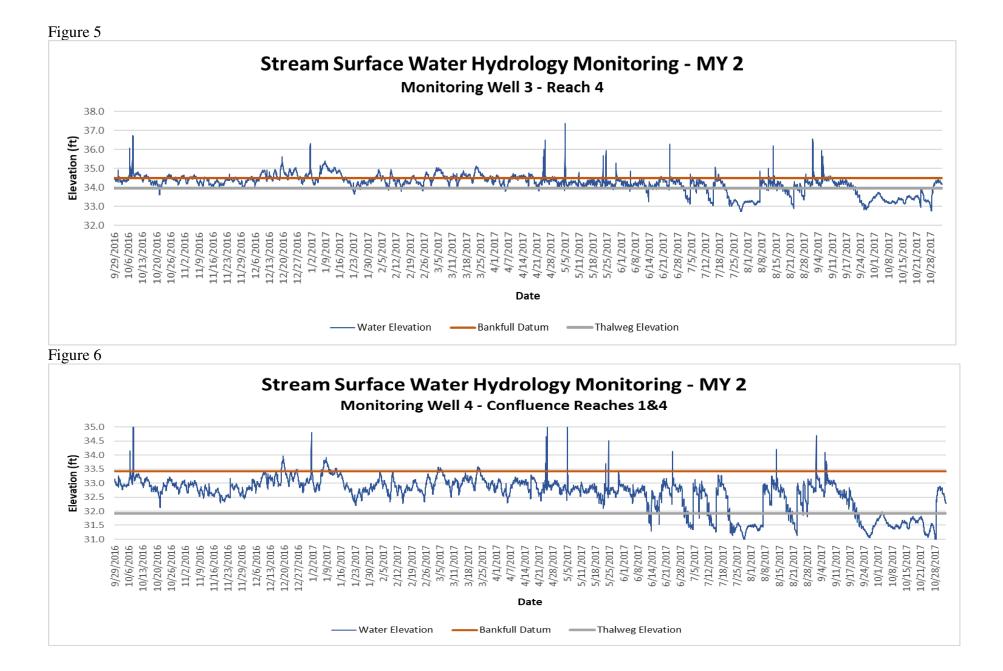
APPENDIX E: HYDROLOGIC DATA

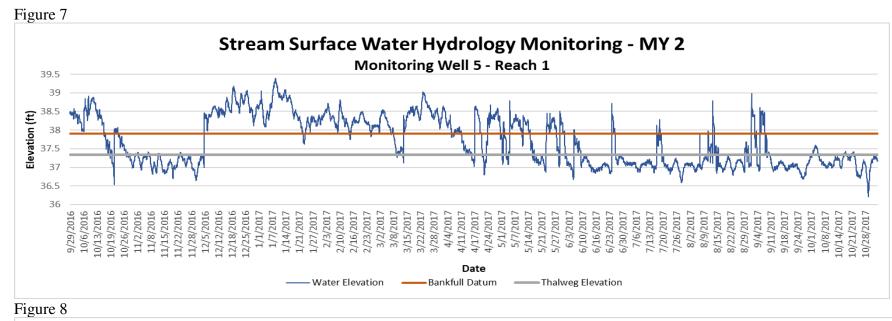
Table 9: Verification of Bankfull Events

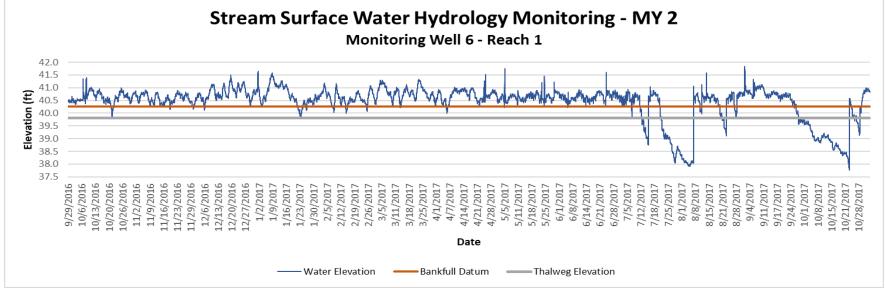

Table 12: Verification of Baseflow


Figure 2: Monthly Rainfall Data with Percentiles

Figures 3-12: Stream Surface Water Hydrology (Well 1-10)


	Table 9: Verifica	ation of Bankfull Events		
Date of Observation	Date of Occurance	Method	Greater than Qbkf Stage?	Notes
11/17/17	9/29/2016-10/17/2016, 10/21-10/24, 7/16-7/17, 8/11, 8/13-8/14, 9/6- 9/8/2017	On-Site data logger	Y	Reach 1 (Well 5, 6)
11/17/17	9/29/2016-10/16/2016, 10/25, 12/18-12/28, 12/30-1/3, 1/5-1/19, 1/30-1/31, 2/1-2/6, 2/20- 2/21, 3/3-3/6, 3/19-3/27, 3/29-3/30, 4/1-4/3, 4/13, 4/18-4/20, 4/28-4/30, 5/30/2017,	On-Site data logger	Y	Reach 2 (Well 7)
11/17/17	9/29/2016-11/3/2017	On-Site data logger	Y	Reach 3 (Well 1, 2)
11/17/17	9/29/2016-10/2, 10/6-10/12, 10/14-10/16, 10/25- 10/29, 11/1-11/2, 11/5-11/8, 11/12, 12/4-12/5, 12/9-12/28, 12/30-1/3, 1/6-1/17, 2/2-2/6, 2/10- 2/11, 2/21, 3/2-3/31, 4/2-4/3, 4/9-4/20, 4/24- 4/26, 4/29-4/30, 5/5, 5/25, 5/30, 6/21, 6/24-6/25, 7/5, 7/18, 8/13-8/14, 9/9-9/11/2017	On-Site data logger	Y	Reach 4 (Well 3)
11/17/17	10/7-10/9, 12/19-12/20, 1/2, 1/7-1/10, 1/13- 1/14, 3/5, 3/23-3/24, 4/24-4/25, 5/5, 5/23, 5/25, 6/24, 9/6/2017	On-Site data logger	Y	Reach 1& 4 Confluence (Well 4)


	Table 12: Verific	ation of Baseflow	
Well (Reach)	Dates of Occurrence	30 Consecutive Days Minimum Flow Requirement Met?	Notes
1 (Reach 3)	Various	Y	On-site data logger
2 (Reach 3)	Various	Y	On-site data logger
3 (Reach 4)	Various	Y	On-site data logger
4 (Confluence R1&4)	Various	Y	On-site data logger
5 (Reach 1)	Various	Y	On-site data logger
6 (Reach 1)	Various	Y	On-site data logger
7 (Reach 2)	Various	Y	On-site data logger
8 (Reach 5)	Various	Y	On-site data logger
9 (Reach 5)	Various	Y	On-site data logger
10 (Reach 5)	Various	Y	On-site data logger



51

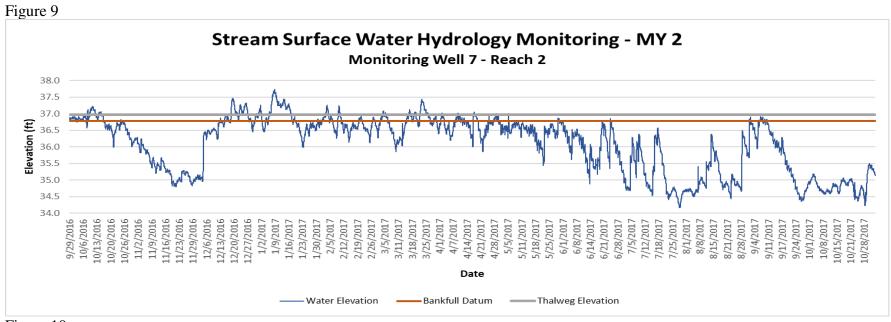
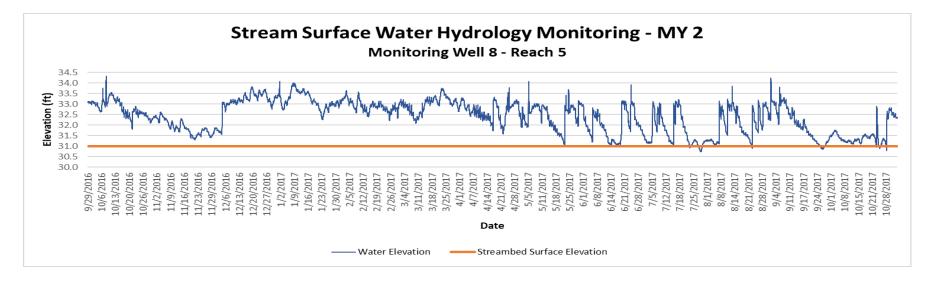
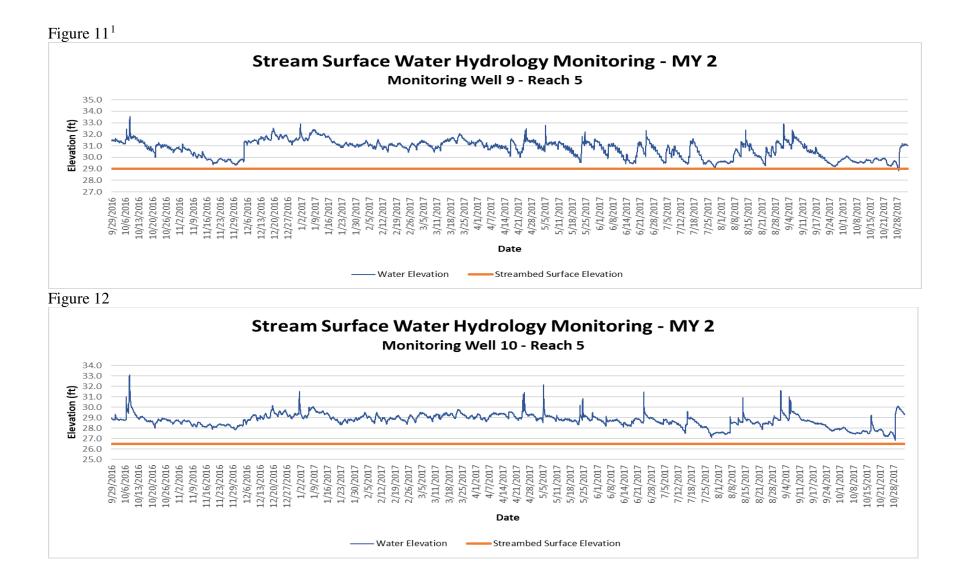




Figure 10

¹ Grading occurred in November 2017 that changed streambed surface elevation on Reach 5.

Hudson Stream Restoration Project - Year 2 Monitoring ReportDRAFT

December 2017 DMS Project # 95361